
Chapter 4
Risk-Averse Agent

What if the agent is risk-averse. Fluctuations of the agent’s revenue stream occur
because the principal’s equipment unit can be either in state 0 (‘operational’) or in
state 1 (‘down’). In the operational state the penalty rate is 0, whereas in the down
state the penalty rate is p. In other words, the penalty rate at any point of time can be
modeled as pB where B is a Bernoulli random variable of value 0 with probability
P.0/ D �=.�C�/ and value 1 with probability P.1/ D �=.�C�/. The dispersion of
B decreases as P.1/ moves away from 1=2 in either direction. Denote momentarily
a � P.1/.

The risk of a random variable is often expressed by the dispersion of the
underlying random fluctuation. Standard deviation is commonly used to measure
the dispersion of revenue in risk sharing contracts because it is conveniently additive
with the revenue stream (Stiglitz 1974; Fukunaga and Huffman 2009; Lewis and
Bajari 2014). The standard deviation of pB as a function of a, is denoted by

s.a/ � �pB D p
p

a.1 � a/ for a 2 Œ0; 1�

We have modified the above risk measure somewhat. Since s.a/ strictly decreases
as a moves away from 1=2 in either direction so any other dispersion measure of pB
that has this property is a monotone increasing function of the standard deviation
s.a/. We choose to adopt the dispersion measure:

r.a/ � p

�
1

2
�
ˇ̌̌
ˇ12 � a

ˇ̌̌
ˇ
�

for a 2 Œ0; 1�

The r.a/ above is strictly decreasing as a gets away from 1=2 in either direction and
r.a/ has the property that for any a; a0 2 Œ0; 1�, we have

r.a/ � r.a0/ , s.a/ � s.a0/
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Fig. 4.1 �.�; w; p/ as a function of P.1/ when � D 1

Note that r.a/ increases (decreases) if and only if the standard deviation s.a/

increases (decreases).
Risk premium of a risk-averse agent is the $ value he is willing to forfeit to

avoid uncertainties (fluctuations) in his revenue stream and as a consequence the
risk premium is defined as follows:

�.�; w; p/ D �p

�
1

2
�
ˇ̌̌
ˇ12 � a

ˇ̌̌
ˇ
�

D �p

�
1

2
�
ˇ̌̌
ˇ12 � P.1/

ˇ̌̌
ˇ
�

D �p

�
1

2
�
ˇ̌
ˇ̌1
2

� �

� C �

ˇ̌
ˇ̌� (4.1)

Figure 4.1 is an example that depicts the shape of �.�; w; p/ as a function of P.1/

when � D 1. �.�; w; p/ reaches its peak when the equipment has equal likelihood of
being operational and being failed. In such case the agent can hardly infer anything
from the state of the equipment in order to predict his revenue stream and therefore it
is considered the most risky. When the likelihood of the equipment being operational
is close to 1, the agent can predict his revenue stream more precisely (less risky).
Similarly when the likelihood of the equipment being failed is close to 1, the agent
can also predict his revenue stream more precisely.

The real parameter � indicates the preference and intensity of the agent’s risk
attitude. When � > 0 the agent is risk-averse, when � D 0 the agent is risk-neutral
(and the model reduces to the model of Chap. 3), and � < 0 indicates that the agent
is risk-seeking (see Chap. 5). In the analysis below, the value � plays the role of an
exogenous variable.
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Modifying (3.2), the risk-averse agent’s expected utility rate in this section is:

uA.�I w; p/ D
�

w � p�

� C �
� � � �p

�
1

2
�
ˇ̌̌
ˇ12 � �

� C �

ˇ̌̌
ˇ
��

C
for w > 0; p > 0; � � 0 (4.2)

Note that � > 0 ) �.�; w; p/ � 0, and such a risk premium being subtracted from
a risk-neutral agent’s expected utility rate (as in (4.2)) implies risk-aversion. The
analysis is different for � 2 .0; 4=5/ compared to � � 4=5. Thus, for convenience,
when � 2 .0; 4=5/ we describe the agent as weakly risk-averse, and when � � 4=5

we describe the agent as strongly risk-averse. We assume, say for historical reasons,
that both the agent and the principal know not only the type of the risk-averse agent,
but also the value of �.

The principal is always risk-neutral and her expression of expected profit rate
…P.w; pI �/ is the same as (3.3).

Define the part inside the brackets in (4.2) as

u.�/ � w � p�

� C �
� � � �p

�
1

2
�
ˇ̌̌
ˇ12 � �

� C �

ˇ̌̌
ˇ
�

D

8̂̂
<
ˆ̂:

w � �p � .1 � �/p�

� C �
� �, � 2 Œ0; ��

w � .1 C �/p�

� C �
� �, � > �

(4.3)

The behavior of the utility function u.�/ for � � 0 is of prime technical interest.
Note that u.�/ is differentiable everywhere on � � 0 except at � D �. When
� 2 Œ0; �/:

du.�/

d�
D .1 � �/p�

.� C �/2
� 1, lim

�!0C

du.�/

d�
D 1 � �

�

�
p � �

1 � �

�

lim
�!��

du.�/

d�
D 1 � �

4�

�
p � 4�

1 � �

�
and

d2u.�/

d�2
D �2.1 � �/p�

.� C �/3

and when � > �:

du.�/

d�
D .1 C �/p�

.� C �/2
� 1, lim

�!�C

du.�/

d�
D 1 C �

4�

�
p � 4�

1 C �

�

lim
�!C1

du.�/

d�
D �1 and

d2u.�/

d�2
D �2.1 C �/p�

.� C �/3
< 0

The above derivatives indicate the direction of monotonicity and the concav-
ity/convexity of function u.�/ over Œ0; �/ and .�; C1/. Table 4.1 summarizes



22 4 Risk-Averse Agent
Ta

bl
e

4.
1

In
di

ca
to

rs
of

th
e

m
on

ot
on

ic
ity

an
d

th
e

co
nc

av
ity

/c
on

ve
xi

ty
of

fu
nc

tio
n

u.
�

/
in

(4
.3

)

O
ve

r
Œ0

;�
/

O
ve

r
.�

;C
1

/

C
as

e
u �

.0
C

/
u.

�
/

is
u �

.�
�

/
u �

.�
C

/
u.

�
/

is
u �

.C
1

/

�
2� 0

;
3 5



p

2� 0
;

�

1
�

�



�

0
C

on
ca

ve
<

0
<

0
C

on
ca

ve
<

0

p
2�

�

1
�

�
;

4
�

1
C

�


 a
>

0
C

on
ca

ve
<

0
�

0
C

on
ca

ve
<

0

p
2�

4
�

1
C

�
;

4
�

1
�

�



>

0
C

on
ca

ve
�

0
>

0
C

on
ca

ve
<

0

p
2�

4
�

1
�

�
;C

1
�

>
0

C
on

ca
ve

>
0

>
0

C
on

ca
ve

<
0

�
2� 3 5

;1

�
p

2� 0
;

4
�

1
C

�



<

0
C

on
ca

ve
<

0
�

0
C

on
ca

ve
<

0

p
2�

4
�

1
C

�
;

�

1
�

�


 b
�

0
C

on
ca

ve
<

0
>

0
C

on
ca

ve
<

0

p
2�

�

1
�

�
;

4
�

1
�

�



>

0
C

on
ca

ve
�

0
>

0
C

on
ca

ve
<

0

p
2�

4
�

1
�

�
;C

1
�

>
0

C
on

ca
ve

>
0

>
0

C
on

ca
ve

<
0

�
2Œ

1
;C

1
/

p
2� 0

;
4
�

1
C

�



<

0
C

on
ve

x
<

0
�

0
C

on
ca

ve
<

0

p
2�

4
�

1
C

�
;C

1
�

<
0

C
on

ve
x

<
0

>
0

C
on

ca
ve

<
0

a N
ot

e
th

at
�

2.
0
;3

=
5
�

)
4
�

=
.1

C
�
/

�
�

=
.1

�
�
/

b
N

ot
e

th
at

�
2.

3
=
5
;1

/
)

�
=
.1

�
�
/

>
4
�

=
.1

C
�
/



4.1 Optimal Strategies with a Weakly Risk-Averse Agent 23

these indicators for various regions of the space R
2C of the pairs .�; p/. In the table

u�.�/ D lim�!.�/ du=d�, and u�.�C/ represents the limit of u�.�/ as � approaches
.�/ from above, and similar for u�.��/.

4.1 Optimal Strategies with a Weakly Risk-Averse Agent

Similarly to the risk-neutral agent case, agent’s expected utility rate increases and
principal’s expected profit rate decreases in w, therefore for any value of p the
principal maximizes her expected profit rate by lowering the compensation rate
w yet maintaining the agent’s participation by setting the agent’s expected utility
rate equal to his reservation utility rate. Although the principal cannot contract
directly on the agent’s service capacity, she anticipates the agent to optimize his
expected utility rate when offered a contract. That is, for any w and p proposed by
the principal, the agent computes his value of � that maximizes his expected utility
rate and subsequently decides whether to accept the contract or not, by solving the
following optimization problem:

max
��0

u.�/ D max
��0

�
w � p�

� C �
� � � �p

�
1

2
�
ˇ̌̌
ˇ12 � �

� C �

ˇ̌̌
ˇ
��

(4.4)

The agent’s optimal service capacity is denoted by ��.w; p/ D argmax��0 u.�/.

Notation:

p1 � �

1 C �
, p2 � �

1 � �
, and p3 �

8
�
1 �p

1 � �2

�
�

�2
(4.5)

and the following identity is easily verified using the definition of p3:

w3 � �p3 C 2
p

.1 � �/p3� � � D 2
p

.1 C �/p3� � � (4.6)

p1, p2, p3 and w3 are functions of � and �. However we suppress the parameters
.�; �/.

Next we state a number of technical lemmas (see proofs in the Appendix).

Lemma 4.1. Let 1 > � > 0 and � > 0. If p � �=.1 � �/, then p � �p C
2
p

.1 � �/p� � � > 0.

Lemma 4.2. Let 1 > � > 0 and � > 0.

(a) If p > 8
�
1 �p

1 � �2

�
�=�2, then �p � 2

�p
1 C � � p

1 � �
	p

p� > 0.

(b) If 8
�
1 �p

1 � �2

�
�=�2 > p > 0, then 0 > �p � 2

�p
1 C � � p

1 � �
	p

p�.
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(c) If p D 8
�
1 �p

1 � �2

�
�=�2, then �p � 2

�p
1 C � � p

1 � �
	p

p� D 0.

Lemma 4.3. Let 1 > � > 0 and � > 0, then 4�=.1��/ > 8
�
1 �p

1 � �2

�
�=�2 >

4�=.1 C �/.

Lemma 4.4. Let � > 0 and � > 0. If p > 4�=.1 C �/, then 2
p

.1 C �/p� � � > 0.

Lemma 4.5. Let � > 0 and � > 0.

(a) If
�
1 C 2� C 2

p
�.1 C �/

�
� > p >

�
1 C 2� � 2

p
�.1 C �/

�
�, then 0 > p �

2
p

.1 C �/p� C �.

(b) If
�
1 C 2� � 2

p
�.1 C �/

�
� > p > 0 or p >

�
1 C 2� C 2

p
�.1 C �/

�
�, then

p � 2
p

.1 C �/p� C � > 0.

(c) If p D
�
1 C 2� � 2

p
�.1 C �/

�
� or

�
1 C 2� C 2

p
�.1 C �/

�
�, then p �

2
p

.1 C �/p� C � D 0.

Lemma 4.6. Let � > 0 and � > 0, then 4�=.1 C �/ >
�
1 C 2� � 2

p
�.1 C �/

�
�.

Lemma 4.7. Let � > 0.

(a) If 4=5 > � > 0, then
�
1 C 2� C 2

p
�.1 C �/

�
� > �=.1 � �/.

(b) If 1 > � > 4=5, then �=.1 � �/ >
�
1 C 2� C 2

p
�.1 C �/

�
.

(c) If � D 4=5, then
�
1 C 2� C 2

p
�.1 C �/

�
� D �=.1 � �/.

Lemma 4.8. Let � > 0.

(a) If 4=5 > � > 0, then 8
�
1 �p

1 � �2

�
�=�2 > �=.1 � �/.

(b) If 1 > � > 4=5, then �=.1 � �/ > 8
�
1 �p

1 � �2

�
�=�2.

(c) If � D 4=5, then 8
�
1 �p

1 � �2

�
�=�2 D �=.1 � �/.

Lemma 4.8 part (a) implies � 2 .0; 4=5/ ) p3 > p2, which makes condition (4.8)
below consistent.

We identify the optimal response of a weakly risk-averse agent to any contract
offer .w; p/ 2 R

2C in Proposition 4.9.

Proposition 4.9. Consider a weakly risk-averse agent .� 2 .0; 4=5//.

(a) Given

w � p 2 .0; p2� (4.7)

then the agent accepts the contract and installs ��.w; p/ D 0 resulting in
expected utility rate uA.��.w; p/I w; p/ D w � p � 0. The agent rejects the
contract if p 2 .0; p2� and w 2 .0; p/.
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(b) Given

p 2 .p2; p3/ and w � �p C 2
p

.1 � �/p� � � (4.8)

then the agent accepts the contract and installs ��.w; p/ D p
.1 � �/p� �

� > 0 resulting in expected utility rate uA.��.w; p/I w; p/ D w � �p �
2
p

.1 � �/p� C � � 0. The agent rejects the contract if p 2 .p2; p3/ and

w 2
�
0; �p C 2

p
.1 � �/p� � �

�
.

(c) Given

p D p3 and w � w3 (4.9)

then the agent accepts the contract and is indifferent about installing either
��.w; p/ D p

.1 � �/p3� � � or ��.w; p/ D p
.1 C �/p3� � �. In both cases

the agent receives expected utility rate uA.��.w; p/I w; p/ D w � w3 � 0. If

r 2 .0; p3/, then there exists a w� such that
�
.w�; p3/;

p
.1 � �/p3� � �

�
is the

unique admissible solution (see Definition 2.3). If r D p3, then there exists w�

such that
�
.w�; p3/;

p
.1 � �/p3� � �

�
and

�
.w�; p3/;

p
.1 C �/p3� � �

�
are

both admissible solutions (see Definition 2.3). If r > p3, then there exists a w�

such that
�
.w�; p3/;

p
.1 C �/p3� � �

�
is the unique admissible solution (for

proof see Proposition 4.12). He rejects the contract if p D p3 and w 2 .0; w3/.
(d) Given

p > p3 and w � 2
p

.1 C �/p� � � (4.10)

then the agent accepts the contract and installs ��.w; p/ D p
.1 C �/p��� > 0

resulting in expected utility rate uA.��.w; p/I w; p/Dw�2
p

.1 C �/p�C� � 0.

The agent rejects the contract if p > p3 and w 2
�
0; 2

p
.1 C �/p� � �

�
.

Proof. According to Table 4.1, the optimization of u.�/ when � 2 .0; 3=5� versus
� 2 .3=5; 4=5/ is different. Therefore we prove the proposition separately for � 2
.0; 3=5� and � 2 .3=5; 4=5/.

Case � 2 .0; 3=5�: Note that 4p2 > 4p1 � p2 and according to Lemma 4.3, 4p2 >

p3 > 4p1. Therefore we have 4p2 > p3 > 4p1 � p2. Figure 4.2 shows the shape of
u.�/ when � 2 .0; 3=5� and the value of p falls in different ranges. The structure of
the proof when � 2 .0; 3=5� is depicted in Fig. 4.3.

Case p 2 .0; p2�: According to Table 4.1, u.�/ is decreasing with respect to � �
0. Thus the agent’s optimal service capacity is ��.w; p/ D 0 and from (4.3)
u.��.w; p// D w � p.

Subcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the contract.
Subcase w � p: u.��.w; p// � 0, thus the agent would accept the contract if

offered.
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Fig. 4.2 Illustration of the forms of u.�/ when � 2 .0; 3=5�
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η ∈
(

0,
3

5

]

p > 4p2

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p ∈ (4p1, 4p2]

p ∈ (p3, 4p2]

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p = p3

w ≥ w3
μ∗ =

√
(1 − η)p3λ − λ

or μ∗ =
√

(1 + η)p3λ − λ

w ∈ (0, w3) Reject.

p ∈ (4p1, p3)

w ≥ ηp + 2
√
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√
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√
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√
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√
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w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

Fig. 4.3 Structure of the proof for Proposition 4.9 when � 2 .0; 3=5�

Case p 2 .p2; 4p1�: According to Table 4.1, the service capacity that maxi-
mizes u.�/ lies in .0; �/. ��.w; p/ is computed from first order condition
du.�/=d�j�D��.w;p/ D 0 ) ��.w; p/ D p

.1 � �/p� � � > 0 and from
Eq. (4.3) u.��.w; p// D w � �p � 2

p
.1 � �/p� C �. According to Lemma 4.1,

p > p2 ) �p C 2
p

.1 � �/p� � � > 0.

Subcase w 2
�

0; �p C 2
p

.1 � �/p� � �
�

: u.��.w; p// < 0, therefore the

agent rejects the contract.
Subcase w � �p C 2

p
.1 � �/p� � �: u.��.w; p// � 0, therefore the agent

would accept the contract if offered.

Case p 2 .4p1; 4p2�: According to Table 4.1, there is a service capacity that max-
imizes u.�/ for � 2 .0; �� and a service capacity that maximizes u.�/ for � > �.
Denote the optimal service capacity in .0; �� by ��

.0;��.w; p/. From the first order

condition the optimal service capacity is ��
.0;��.w; p/ D p

.1 � �/p� � � and

from (4.3) u
�
��

.0;��.w; p/
�

D w � �p � 2
p

.1 � �/p� C �. Denote the optimal

service capacity for � > � by ��
�.w; p/, which is solved from first order condi-

tion du.�/=d�j�D��

� .w;p/ D 0 ) ��
�.w; p/ D p

.1 C �/p� � � and from (4.3)

u
�
��

�.w; p/
	 D w � 2

p
.1 C �/p� C �. The agent has a choice of two service

capacities and he installs the one that generates a higher expected utility rate.
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Note that u
�
��

�.w; p/
	 � u

�
��

.0;��.w; p/
�

D �p � 2
�p

1 C � � p
1 � �

	p
p�.

According to Lemma 4.3, 4p2 > p3 > 4p1, therefore we examine the following
subcases.

Subcase p 2 .4p1; p3/: From Lemma 4.2 part (b), u
�
��

.0;��.w; p/
�

>

u
�
��

�.w; p/
	
, thus the agent’s optimal service capacity is ��.w; p/ Dp

.1 � �/p� � � and u.��.w; p// D w � �p � 2
p

.1 � �/p� C �. From
Lemma 4.1, p > 4p1 � p2 ) �p C 2

p
.1 � �/p� � � > 0.

Subsubcase w 2
�

0; �p C 2
p

.1 � �/p� � �
�

: u.��.w; p// < 0, there-

fore the agent rejects the contract.
Subsubcase w � �p C 2

p
.1 � �/p� � �: u.��.w; p// � 0, thus the

agent would accept the contract if offered.

Subcase p D p3: According to Lemma 4.2 part (c), u
�
��

.0;��.w; p3/
�

D
u
�
��

�.w; p3/
	
, indicating that installing ��

.0;��.w; p3/ or ��
�.w; p3/ leads to

the same agent’s expected utility rate. Therefore the agent is indifferent
about installing either ��.w; p/ D p

.1 � �/p3� � � or ��.w; p/ Dp
.1 C �/p3� � �. Still, the capacity value has to lead to admissible solutions

(see Proposition 4.12). Recall the definition of w3 from (4.6). According to
Lemma 4.1, p3 > 4p1 � p2 ) w3 D �p3 C 2

p
.1 � �/p3� � � > 0.

Subsubcase w 2 .0; w3/: u.��.w; p// < 0, thus the agent rejects the
contract.

Subsubcase w � w3: u.��.w; p// � 0, thus the agent would accept the
contract if offered.

Subcase p 2 .p3; 4p2�: By Lemma 4.2 part (a), u
�
��

�.w; p/
	
>u

�
��

.0;��.w; p/
�

,

therefore the agent’s optimal service capacity is ��.w; p/ D p
.1 C �/p� � �

and u.��.w; p// D w � 2
p

.1 C �/p� C �. According to Lemma 4.4,
p > p3 > 4p1 ) 2

p
.1 C �/p� � � > 0.

Subsubcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, therefore the

agent rejects the contract.
Subsubcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent

would accept the contract if offered.

Case p > 4p2: According to Table 4.1, the service capacity that maximizes u.�/

satisfies � > �. From the first order condition the agent’s optimal service
capacity is ��.w; p/ D p

.1 C �/p� � � and from Eq. (4.3) u.��.w; p// D
w � 2

p
.1 C �/p� C �. According to Lemma 4.4, p > 4p2 > 4p1 )

2
p

.1 C �/p� � � > 0.

Subcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.

This completes the proof for Proposition 4.9 when � 2 .0; 3=5�.
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Case � 2 .3=5; 4=5/: Note that 4p2 > p2 > 4p1 and according to Lemmas 4.3
and 4.8 part (a), 4p2 > p3 > p2. Therefore we have 4p2 > p3 > p2 > 4p1.
Figure 4.4 shows the shape of u.�/ when � 2 .3=5; 4=5/ and the value of p falls
in different ranges. The structure of the proof when � 2 .3=5; 4=5/ is depicted in
Fig. 4.5.

Case p 2 .0; 4p1�: According to Table 4.1, u.�/ is decreasing with respect to
� � 0. Thus the agent’s optimal service capacity is ��.w; p/ D 0 and from (4.3)
u.��.w; p// D w � p.

Subcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the contract.
Subcase w � p: u.��.w; p// � 0, thus the agent would accept the contract if

offered.

Case p 2 .4p1; p2�: According to Table 4.1, there is a service capacity that
maximizes u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/

for � > �. Denote the optimal service capacity in Œ0; �/ by ��
Œ0;�/.w; p/. Note

that u.�/ is decreasing with respect to � over Œ0; �/, therefore the agent’s

optimal service capacity is ��
Œ0;�/.w; p/ D 0 and from (4.3) u

�
��

Œ0;�/.w; p/
�

D
w � p. Denote the optimal service capacity for � > � by ��

�.w; p/. From
the first order condition ��

�.w; p/ D p
.1 C �/p� � � and from Eq. (4.3)

u
�
��

�.w; p/
	 D w � 2

p
.1 C �/p� C �. The agent has to choose one of the

two service capacities and installs the one with higher expected utility rate. Note

that u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D p � 2
p

.1 C �/p� C �. According to

Lemma 4.6, 4p1 >
�
1 C 2� � 2

p
�.1 C �/

�
� and according to Lemma 4.7

part (a),
�
1 C 2� C 2

p
�.1 C �/

�
� > p2. Thus according to Lemma 4.5 part

(a), u
�
��

Œ0;�/.w; p/
�

> u
�
��

�.w; p/
	
, the agent’s optimal service capacity is

��.w; p/ D 0 and u.��.w; p// D w � p.

Subcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the contract.
Subcase w � p: u.��.w; p// � 0, thus the agent would accept the contract if

offered.

Case p 2 .p2; 4p2�: According to Table 4.1, there is a service capacity that
maximizes u.�/ for � 2 .0; �� and a service capacity that maximizes u.�/

for � > �. Denote the optimal service capacity in .0; �� by ��
.0;��.w; p/. From

the first order condition ��
.0;��.w; p/ D p

.1 � �/p� � � and from Eq. (4.3)

u
�
��

.0;��.w; p/
�

D w � �p � 2
p

.1 � �/p� C �. Denote the optimal service

capacity for � > � by ��
�.w; p/. From the first order condition ��

�.w; p/ Dp
.1 C �/p� � � and from Eq. (4.3) u

�
��

�.w; p/
	 D w � 2

p
.1 C �/p� C �.

The agent has to choose one of the two service capacities and installs the
one that generates a higher expected utility rate. Note that u

�
��

�.w; p/
	 � u
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Fig. 4.4 Illustration of the forms of u.�/ when � 2 .3=5; 4=5/
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η ∈
( 3

5
,
4

5

)

p > 4p2

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p ∈ (p2, 4p2]

p ∈ (p3, 4p2]

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p = p3

w ≥ w3
μ∗ =

√
(1 − η)p3λ − λ

or μ∗ =
√

(1 + η)p3λ − λ

w ∈ (0, w3) Reject.

p ∈ (p2, p3)

w ≥ ηp + 2
√

(1 − η)pλ − λ μ∗ =
√

(1 − η)pλ − λ

w ∈
(
0, ηp + 2

√
(1 − η)pλ − λ

)
Reject.

p ∈ (4p1, p2]

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

p ∈ (0, 4p1]

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

Fig. 4.5 Structure of the proof for Proposition 4.9 when � 2 .3=5; 4=5/

�
��

.0;��.w; p/
�

D �p � 2
�p

1 C � � p
1 � �

	p
p�. According to Lemmas 4.3

and 4.8 part (a), 4p2 > p3 > p2, therefore we examine the following subcases.

Subcase p 2 .p2; p3/: By Lemma 4.2 part (b), u
�
��

.0;��.w; p/
�

> u
�
��

�.w; p/
	
,

therefore the agent’s optimal service capacity is ��.w; p/ D p
.1 � �/p� � �

and u.��.w; p// D w � �p � 2
p

.1 � �/p� C �. According to Lemma 4.1,
p > p2 ) �p C 2

p
.1 � �/p� � � > 0.

Subsubcase w 2
�

0; �p C 2
p

.1 � �/p� � �
�

: u.��.w; p// < 0, there-

fore the agent rejects the contract.
Subsubcase w � �p C 2

p
.1 � �/p� � �: u.��.w; p// � 0, thus the

agent would accept the contract if offered.

Subcase p D p3: According to Lemma 4.2 part (c), u
�
��

.0;��.w; p3/
�

D
u
�
��

�.w; p3/
	
, indicating that installing ��

.0;��.w; p/ or ��
�.w; p/ leads to

the same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D p

.1 � �/p3� � � or ��.w; p/ D p
.1 C �/p3� � �.

Again, the service capacity has to lead to admissible solutions (see
Proposition 4.12). Recall the definition of w3 from (4.6). According to
Lemma 4.1, p3 > p2 ) w3 D �p3 C 2

p
.1 � �/p3� � � > 0.

Subsubcase w 2 .0; w3/: u.��.w; p// < 0, thus the agent rejects the
contract.
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Subsubcase w � w3: u.��.w; p// � 0, thus the agent would accept the
contract if offered.

Subcase p 2 .p3; 4p2�: By Lemma 4.2 part (a), u
�
��

�.w;p/
	
>u

�
��

.0;��.w; p/
�

,

thus the agent’s optimal service capacity is ��.w; p/ D p
.1 C �/p� � �

and u.��.w; p// D w � 2
p

.1 C �/p� C �. According to Lemma 4.4,
p > p3 > p2 > 4p1 ) 2

p
.1 C �/p� � � > 0.

Subsubcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, therefore the

agent rejects the contract.
Subsubcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent

would accept the contract if offered.

Case p > 4p2: According to Table 4.1, the service capacity that maximizes u.�/

satisfies � > �. From the first order condition the agent’s optimal service
capacity is ��.w; p/ D p

.1 C �/p� � � and from Eq. (4.3) u.��.w; p// D
w � 2

p
.1 C �/p� C �. According to Lemma 4.4, p > 4p2 > 4p1 )

2
p

.1 C �/p� � � > 0.

Subcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.

This completes the proof for Proposition 4.9 when � 2 .3=5; 4=5/. ut
In summary, given exogenous market conditions such that a contract offer

satisfying the reservation value constraints for both the principal and a weakly
risk-averse agent exists (see Theorem 4.19 and Proposition 4.20 later), the agent
determines his optimal capacity using one of two formulas:

��.w; p/ D
p

.1 � �/p� � � > 0 or ��.w; p/ D
p

.1 C �/p� � � > 0

The conditions when a weakly risk-averse agent accepts the contract can be depicted
by the shaded areas in Fig. 4.6, where � D 0:6. The three shaded areas with different
grey scales represent conditions (4.7), (4.8) and (4.10) under which the agent accepts
the contract but responds differently. The lower bound function of the shaded areas
(denoted by w0.p/) represents the set of offers with agent’s zero expected utility
rate. w0.p/ is defined as follows:

w0.p/ D
8<
:

p when p 2 .0; p2�

�p C 2
p

.1 � �/p� � � when p 2 .p2; p3�

2
p

.1 C �/p� � � when p > p3

Note that since limp!p�

2
w0.p/ D limp!pC

2
w0.p/ D p2 and limp!p�

3
w0.p/ D

limp!pC

3
D �p3 C 2

p
.1 � �/p3� � �, w0.p/ is continuous everywhere over interval
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(1

+ 
η 
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3 

λ
 −

 λ

μ∗ =0 μ∗ = (1− η )p λ − λ μ∗ = (1+ η )p λ − λ

w=p

w= η p+2 (1− η )p λ − λ

w=2 (1+ η )p λ − λ

Fig. 4.6 Conditions when a weakly risk-averse agent accepts the contract with � D 0:6

p 2 RC. Since limp!p�

2
dw0.p/=dp D limp!pC

2
dw0.p/=dp D 1, w0.p/ is differ-

entiable at p D p2. However since limp!p�

3
dw0.p/=dp D � C p

.1 � �/�=p3 ¤p
.1 C �/�=p3 D limp!pC

3
dw0.p/=dp, w0.p/ is not differentiable at p D p3.

4.1.1 Sensitivity Analysis of a Weakly Risk-Averse Agent’s
Optimal Strategy

The principal would not propose an acceptable contract that results in uA.�� D 0/ �
uA D 0. Therefore the only viable cases to consider are when the agent accepts the

contract and installs positive service capacities: ��.w; p/ D p
.1 � �/p� � � or

��.w; p/ D p
.1 C �/p� � �. We examine the two viable contracts with positive

service capacities.
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First the case ��.w; p/ D p
.1 � �/p� � �. According to (4.8) the compensation

rate w is bounded below by �p C 2
p

.1 � �/p� � � D �pP.0/ C pP.1/ C ��.w; p/,
with the term �pP.0/ representing the expected risk rate perceived by the agent
and the term pP.1/ representing the expected penalty rate charged by the principal
when the optimal capacity is installed. It indicates that the agent should at least be
reimbursed for the expected risk rate, the expected penalty rate and the cost of the
optimal service capacity.

The optimal service capacity
p

.1 � �/p� � � depends on p, �, and �. Its
derivatives are:

@��

@p
D
s

.1 � �/�

4p
> 0,

@��

@�
D
r

.1 � �/p

4�
� 1 and

@��

@�
D �

s
p�

4.1 � �/
< 0

These derivatives indicate that given a � and �, the agent will increase his service
capacity when the penalty rate increases. Note that

p
.1 � �/p� � �, as a function

of �, decreases when � > .1 � �/p=4. From conditions (4.8) and (4.9) the agent
installs service capacity

p
.1 � �/p� � � when p 2 .p2; p3� and from Lemma 4.3

we have 4p2 > p3. Therefore we have 4�=.1��/ D 4p2 > p ) � > .1��/p=4 )
@��=@� < 0. Thus, given a p and �, the savings from reducing the service capacity
are greater than the increase in the penalty charge and in the risk rate, and the agent
will reduce � when � increases. Given a p and �, the agent will reduce the � when
he is more risk-averse.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
.1 � �/p� � � is u�

A � uA.��.w; p/I w; p/ D w � �p � 2
p

.1 � �/p� C �,
and it depends on w, p, � and �. Note that @u�

A=@w D �1 < 0, @u�
A=@p D

�� � p
.1 � �/�=p < 0, indicating that the agent’s optimal expected utility rate

decreases with the compensation rate and the penalty rate. Note that @u�
A=@� D

�p
p
�p

p � p
p2

	
and @u�

A=@� D � �pp � p
p2

	
=
p

p2, and from Proposition 4.9
p > p2 ) p

p � p
p2 > 0, therefore the agent’s optimal expected utility rate also

decreases with his risk intensity and the failure rate.
Next we examine the case ��.w; p/ D p

.1 C �/p� � �. According to (4.10) the
compensation rate w is bounded below by 2

p
.1 C �/p� � � D �pP.1/ C pP.1/ C

��.w; p/, with the term �pP.1/ representing the expected risk rate perceived by
the agent and pP.1/ representing the expected penalty rate charged by the principal
when the optimal capacity is installed. It indicates that the agent should at least be
reimbursed for the expected risk rate, the expected penalty rate and the cost of the
optimal service capacity.

The optimal service capacity
p

.1 C �/p� � � depends on p, �, and �. Its
derivatives are:

@��

@p
D
s

.1 C �/�

4p
> 0,

@��

@�
D
r

.1 C �/p

4�
� 1 and

@��

@�
D
s

p�

4.1 C �/
> 0
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The derivatives indicate that given � and �, the agent will increase the � when the
penalty rate increases. Note that

p
.1 C �/p� � �, as a function of �, increases

when .1 C �/p=4 > �. From (4.9) and (4.10) the agent installs service capacityp
.1 C �/p� � � when p � p3, and from Lemma 4.3 we have p3 > 4p1. Therefore

we have p > 4p1 D 4�=.1 C �/ ) .1 C �/p=4 > � ) @��=@� > 0. Thus, given
p and �, the agent will increase � when � increases. Given p and �, the agent will
increase his � when he is more risk-averse.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
.1 C �/p��� is u�

A � uA.��.w; p/I w; p/ D w�2
p

.1 C �/p�C�, and it depends
on w, p, � and �. Note that @u�

A=@w D �1 < 0, @u�
A=@p D �p.1 C �/�=p < 0

and @u�
A=@� D �pp�=.1 C �/ < 0, indicating that the agent’s optimal expected

utility rate decreases with the compensation rate, the penalty rate and his risk
intensity. Note that @u�

A=@� D � �pp � p
p1

	
=
p

p1, and from Proposition 4.9
p � p3 > p1 ) p

p � p
p1 > 0, therefore the agent’s optimal expected utility

rate also decreases with the failure rate.
Summary: Recall that given the set of offers f.w; p/ W p 2 .0; ��; w � pg

a risk-neutral agent would accept the contract, install ��.w; p/ D 0 and
receive expected utility rate u.��.w; p/I w; p/ D w � p. Given the set of offersn
.w; p/ W p > �; w � 2

p
p� � �

o
he would accept the contract, install ��.w; p/ Dp

p� � � and receive expected utility rate u.��.w; p/I w; p/ D w � 2
p

p� C �.
By comparing the optimal capacities of a weakly risk-averse agent to that of a
risk-neutral agent, three conclusions are drawn:

1. Given a �, the principal has to set a higher p in order to induce a weakly risk-
averse agent to install a positive service capacity versus a risk-neutral agent (p >

� for risk-neutral agent, p > �=.1 � �/ for weakly risk-averse agent).
2. Given a �, when p is relatively low, the � value plays a more prominent role in

the utility of a weakly risk-averse agent who therefore installs a service capacity
lower than a risk-neutral agent (

p
p��� >

p
.1 � �/p���). As the p increases,

the penalty charge and the risk become of greater concern, therefore the weakly
risk-averse agent installs a �� higher than a risk-neutral agent (

p
.1 C �/p� �

� >
p

p� � �).
3. In essence, weakly risk-averse attitude makes an agent worse off. We state this

conclusion formally in Proposition 4.10.

Proposition 4.10. Given w and p, an agent who accepts the contract and installs
a positive service capacity has a decreasing expected utility rate in � 2 Œ0; 4=5/.

Proof. Recall that when w and p satisfy conditions (4.8) and (4.9), the agent
installs capacity ��.w; p/ D p

.1 � �/p� � � > 0, and the agent’s expected
utility rate is u .��.w; p// D w � �p � 2

p
.1 � �/p� C �. Note that @u=@� D

�p C p�=
p

.1 � �/p� D �
�

p �p
�=.1 � �/

p
p
�

D �p
p
�p

p � p
p2

	
.

Since p > p2, therefore @u=@� < 0. When the compensation rate w and
the penalty rate p satisfy conditions (4.9) and (4.10), the agent installs
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capacity ��.w; p/ D p
.1 C �/p��� > 0, and the agent’s expected utility rate is

u .��.w; p// D w � 2
p

.1 C �/p� C �, therefore @u=@� D �pp�=.1 C �/ < 0.
ut

The following Corollary follows from Proposition 4.10.

Corollary 4.11. Given w and p, an agent who accepts the contract and subse-
quently installs a positive service capacity is always worse off when he is weakly
risk-averse .� 2 .0; 4=5// than risk-neutral .� D 0/.

We discuss the case for � � 4=5 in Sect. 4.2.1.

4.1.2 Principal’s Optimal Strategy

Anticipating the agent’s optimal ��.w; p/ the principal chooses the w and p that
maximize her expected profit rate by solving the optimization problem (4.11).

max
w>0;p>0

…P.w; pI ��.w; p// D max
w>0;p>0

�
r��.w; p/

� C ��.w; p/
� w C p�

� C ��.w; p/

�

(4.11)

Denote .w�; p�/ D argmaxw>0;p>0 …P.w; pI ��.w; p//.
Before deriving the principal’s optimal strategy, we examine the case when the

principal’s contract offer satisfies p D p3 and w � w3, in which case the agent is
indifferent with respect to installing two different service capacities. Nevertheless,
the corresponding solutions ..w; p/; �/ have to be admissible solutions (see Defini-
tion 2.3). We state this case formally in Proposition 4.12.

Proposition 4.12. Suppose a weakly risk-averse agent. Assume that the principal’s
potential offers are in the set f.w; p/ W p D p3; w � w3g.

(a) If r 2 .0; p3/, the agent installs �� D p
.1 � �/p3� � � if offered a contract.

(b) If r D p3, both �� D p
.1 � �/p3� � � and �� D p

.1 C �/p3� � � lead
to admissible solutions. Therefore the agent installs either

p
.1 � �/p3� � � orp

.1 C �/p3� � � if offered a contract.
(c) If r > p3, the agent installs �� D p

.1 C �/p3� � � if offered a contract.

Proof. Note that for w � w3 we have @…P.w; p3I �/=@� D .r � p3/�=.� C �/2.
Define �L � p

.1 � �/p3� � � and �H � p
.1 C �/p3� � �. Note that �H > �L.

If r 2 .0; p3/, then @…P=@� < 0, therefore ..w; p3/; �L/ � ..w; p3/; �H/. If the
principal offers a contract (the conditions are discussed in Proposition 4.18 that
follows), then by Definition 2.3 only �L leads to admissible solutions. Thus we
obtain (a). If r > p3, then @…P=@� > 0, therefore ..w; p3/; �H/ � ..w; p3/; �L/.
If the principal offers a contract (see Proposition 4.18), then only �H leads to
admissible solutions. Therefore we obtain (c). If r D p3, then @…P=@� D 0,
indicating that the principal receives the same expected profit rate when the agent
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installs capacity �L or �H . If the principal offers a contract (see Proposition 4.18),
then both �L and �H lead to admissible solutions and we obtain (b). ut
Notation:

r1 � �p3 C .1 � �/
p

p2p3 , r2 �
�

1 C 2�

�p
p3 � p

p2p
p2

��
p3;

and r3 � .1 C 2�/p3 (4.12)

Note that r1, r2 and r3 are functions of � and �. However we suppress the parameters
.�; �/.

Define pcu as follows1:

pcu � 1

9a2

�
b C C C C

	2
(4.13)

where a � 2�, b � .1 � 2�/
p

p2, and d � �r
p

p2 and

C �
3

vuut�1 C
q

�2
1 � 4�3

0

2
, C �

3

vuut�1 �
q

�2
1 � 4�3

0

2
;

where �0 � b2, �1 � 2b3 C 27a2d

Replacing �0 and �1 by the expressions of a, b and d we have

C D
3

vuut2.1 � 2�/3

q
p3

2 � 108�2r
p

p2 C
q

�432�2r.1 � 2�/3p2
2 C 11664�4r2p2

2

and

C D
3

vuut2.1 � 2�/3

q
p3

2 � 108�2r
p

p2 �
q

�432�2r.1 � 2�/3p2
2 C 11664�4r2p2

2

We introduce several technical lemmas with proofs in the Appendix.

Lemma 4.13. Let 4=5 > � > 0 and � > 0.

(a) �p3 C .1 � �/
p

p2p3 > p2 > 0.
(b) p3 > �p3 C .1 � �/

p
p2p3.

(c)
�
1 C 2�

�p
p3 � p

p2

	
=
p

p2

	
p3 > p3.

(d) .1 C 2�/p3 >
�
1 C 2�

�p
p3 � p

p2

	
=
p

p2

	
p3.

Lemma 4.13 implies that for � 2 .0; 4=5/ we have r3 > r2 > p3 > r1 > p2.

1The subscript “cu” stands for “cubic” because (4.13) is the square of the solution to Eq. (A.1),
which is a cubic equation that is introduced later in the proof for Lemma 4.16.
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Lemma 4.14. Let � > 0 and � > 0.

(a) If
�
1 C 3� C 2

p
�.1 C 2�/

�
�=.1 C �/ > r >

�
1 C 3� � 2

p
�.1 C 2�/

�
�=

.1 C �/ then 0 > r � 2
p

.1 C 2�/r�=.1 C �/ C �.

(b) If
�
1 C 3� � 2

p
�.1 C 2�/

�
�=.1 C �/ > r > 0 or r >

�
1 C 3�

C2
p

�.1 C 2�/
�
�=.1 C �/ then r � 2

p
.1 C 2�/r�=.1 C �/ C � > 0.

(c) If r D
�
1 C 3� � 2

p
�.1 C 2�/

�
�=.1 C �/ or r D

�
1 C 3� C 2

p
�.1 C 2�/

�
�=.1 C �/ then r � 2

p
.1 C 2�/r�=.1 C �/ C � D 0.

Lemma 4.15. Given 1 > � > 0 and � > 0, then .1 C 2�/p3 >�
1 C 3� C 2

p
�.1 C 2�/

�
�=.1 C �/.

Lemma 4.16. Consider maxx2Œ
p

p2;
p

p3� f .x/ where f .x/ D r C � � �x2 �p
p2 ..1 � 2�/x C r=x/ and denote x� D argmaxx2Œ

p
p2;

p
p3� f .x/. The solutions

to this optimization problem are

(a) x� D p
p2 if r 2 .0; p2�.

(b) x� D p
pcu 2 �pp2;

p
p3

	
if r 2 .p2; r2/.

(c) x� D p
p3 if r � r2.

Lemma 4.17. Consider max x�p
p3

f .x/ where f .x/ D r C � � p
p1 ..1 C 2�/x

Cr=x/ and denote x� D argmax x�p
p3

f .x/. The solutions to this optimization
problem are

(a) x� D p
p3 if r 2 .0; r3�.

(b) x� D p
r=.1 C 2�/ if r > r3.

Now we state Proposition 4.18, which serves as a stepping stone towards the
main results Theorem 4.19 and Proposition 4.20 that follow later. Proposition 4.18
provides the optimal w� and optimal p� under some restrictions. These restrictions
are later removed in the main results Theorem 4.19 and Proposition 4.20.

Recall that Proposition 4.9 describes the agent’s optimal response to each
contract offer .w; p/. Since the principal will not propose a contract that is going
to be rejected by a weakly risk-averse (WRA) agent, therefore Proposition 4.18
only considers pairs .w; p/ that result in agent’s non-negative expected utility rate.
Define:

D(4.7) � f.w; p/ that satisfies (4.7) when � 2 .0; 4=5/g
D(4.8) � f.w; p/ that satisfies (4.8) when � 2 .0; 4=5/g
D(4.9) � f.w; p/ that satisfies (4.9) when � 2 .0; 4=5/g
D(4.10) � f.w; p/ that satisfies (4.10) when � 2 .0; 4=5/g
DWRA � D(4.7) [ D(4.8) [ D(4.9) [ D(4.10)

(4.14)
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Proposition 4.18. Given a weakly risk-averse agent;

(a) If .w; p/ 2 D(4.7), then the principal does not propose a contract.
(b) Consider offers .w; p/ 2 D(4.8) [ D(4.9).

(b1) If r 2 .0; p2�, then the principal does not propose a contract.

(b2) If r 2 .p2; p3�, then the principal offers .w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu�

��; pcu

�
and the agent installs service capacity ��.w�; p�/ Dp

.1 � �/pcu� � �.
(b3) If r 2 .p3; r2/, then the principal either offers .w�; p�/ D .w3; p3/ and

the agent installs ��.w; p/ D p
.1 C �/p3� � �, or offers .w�; p�/ D�

�pcu C 2
p

.1 � �/pcu� � �; pcu

�
and the agent installs service capacity

��.w�; p�/ D p
.1 � �/pcu� � �.

(b4) If r � r2, then the principal’s offer is .w�; p�/ D .w3; p3/ and the agent
installs service capacity ��.w�; p�/ D p

.1 C �/p3� � �.

(c) Consider offers .w; p/ 2 D(4.9) [ D(4.10).

(c1) If r 2 .0; r1�, then the principal does not propose a contract.
(c2) If r 2 .r1; p3�, the principal offers a contract with .w�; p�/ D .w3; p3/ and

the agent installs service capacity ��.w�; p�/ D p
.1 � �/p3� � �.

(c3) If r 2 .p3; r3�, the principal offers a contract with .w�; p�/ D .w3; p3/ and
the agent installs service capacity ��.w�; p�/ D p

.1 C �/p3� � �.

(c4) If r > r3, the principal offers .w�; p�/ D
�
2
p

.1 C �/r�=.1 C 2�/ � �;

r=.1 C 2�/
�

and the agent installs service capacity ��.w�; p�/ Dp
.1 C �/r�=.1 C 2�/ � �.

Proof. The structure of the proof for Proposition 4.18 is depicted in Fig. 4.7.

Case .w; p/ 2 D(4.7): According to Proposition 4.9 part (a), in case the principal
makes an offer, the agent accepts the contract but does not install any service
capacity. Since @…P=@w D �1 < 0, thus w� D p and from Eq. (3.3)
…P.w�; pI ��.w�; p// D �w� C p D �p C p D 0. Therefore the principal
does not propose a contract.

Case .w; p/ 2 D(4.8) [ D(4.9): According to Proposition 4.9 part (b), if .w; p/ 2
D(4.8), then in case the principal makes an offer, the agent accepts the contract
and installs

p
.1 � �/p� � �. Since @…P=@w D �1 < 0, therefore w� D

�p C 2
p

.1 � �/p� � �. According to Propositions 4.9 part (c) and 4.12, if
.w; p/ 2 D(4.9) (which implies p D p3), then in case the principal makes an offer,
the agent accepts the contract and installs

p
.1 � �/p3��� if r 2 .0; p3/, installs

either
p

.1 � �/p3��� or
p

.1 C �/p3��� if r D p3, or installs
p

.1 C �/p3���

if r > p3. Since @…P=@w D �1 < 0, therefore w� D w3. Denote the principal’s
expected profit rate when .w; p/ D .w3; p3/ and � D p

.1 � �/p3� � � by
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Risk-Neutral
Principal

with Weakly
Risk-Averse

Agent

(w, p) ∈ (4.9) ∪ (4.10)

r > r3

w∗ = 2

√
(1 + η)rλ

1 + 2η
− λ and p∗ =

r

1 + 2η

and μ∗ =

√
(1 + η)rλ

1 + 2η
− λ

r ∈ (p3, r3] w∗ = w3 and p∗ = p3 and μ∗ =
√

(1 + η)p3λ − λ

r ∈ (r1, p3] w∗ = w3 and p∗ = p3 and μ∗ =
√

(1 − η)p3λ − λ

r ∈ (0, r1] No contract offered.

(w, p) ∈ (4.8) ∪ (4.9)

r ≥ r2 w∗ = w3 and p∗ = p3 and μ∗ =
√

(1 + η)p3λ − λ

r ∈ (p3, r2)
w∗ = ηpcu + 2

√
(1 − η)pcuλ − λ

and p∗ = pcu and μ∗ =
√

(1 − η)pcuλ − λ

or w∗ = w3 and p∗ = p3 and μ∗ =
√

(1 + η)p3λ − λ

r ∈ (p2, p3] w∗ = ηpcu + 2
√

(1 − η)pcuλ − λ

and p∗ = pcu and μ∗ =
√

(1 − η)pcuλ − λ

r ∈ (0, p2] No contract offered.

(w, p) ∈ (4.7) No contract offered.

Fig. 4.7 Structure of the proof for Proposition 4.18

…L
P.p3/, and denote the principal’s expected profit rate when.w; p/ D .w3; p3/

and � D p
.1 C �/p3� � � by …H

P .p3/. By plugging the value of w, p and � into
Eq. (3.3):

…L
P.p3/ D r C � � �p3 � p

p2

�
.1 � 2�/

p
p3 C rp

p3

�

D
�p

p3 � p
p2p

p3

�
.r � r1/ (4.15)

…H
P .p3/ D r C � � p

p1

�
.1 C 2�/

p
p3 C rp

p3

�
(4.16)

and the principal’s optimization problem is maxp2Œp2;p3� …P.w�; pI ��.w�; p//

where:

…P.w�; pI ��.w�; p// D

8̂̂
<̂
ˆ̂̂:

r C � � �p � p
p2

�
.1 � 2�/

p
p C rp

p

�
;

for p 2 Œp2; p3/

max
˚
…L

P.p3/; …H
P .p3/

�
, for p D p3
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Define x � p
p, the expression r C � � �p � p

p2

�
.1 � 2�/

p
p C r=

p
p
	

can
be restated as f .x/ D r C � � �x2 � p

p2 ..1 � 2�/x C r=x/. Maximizing f .x/

with respect to x over
�p

p2;
p

p3



is equivalent to maximizing r C � � �p �p

p2

�
.1 � 2�/

p
p C r=

p
p
	

with respect to p over the interval Œp2; p3� in the
sense that

argmax
p2Œp2;p3�

�
r C � � �p � p

p2

�
.1 � 2�/

p
p C rp

p

��
D
0
@ argmax

x2Œ
p

p2;
p

p3�
f .x/

1
A

2

According to Lemma 4.13, r2 > p3 > p2, therefore we examine the following
subcases.

Subcase r 2 .0; p2�: According to Lemma 4.16 part (a), p� D p2; this case
is taken care of in the case when .w; p/ 2 D(4.7) and the principal does not
propose a contract.

Subcase r 2 .p2; p3�: According to Lemma 4.16 part (b) and Proposition 4.12
part (a) and (b), p� D pcu and the principal’s expected profit rate is
…P.w�; p�I ��.w�; p�// > …P.p2; p2I 0/ D 0. Thus the principal proposes
w� D �pcu C 2

p
.1 � �/pcu� � � and p� D pcu that induces the agent to

install ��.w�; p�/ D p
.1 � �/pcu� � �.

Subcase r 2 .p3; r2/: According to Lemma 4.16 part (b) and Proposition 4.12
part (c), the principal chooses either p� D pcu with expected profit rate
…P.w�; p�I ��.w�; p�// D r C � � �pcu � p

p2

�
.1 � 2�/

p
pcu C r=

p
pcu
	

>

…P.p2; p2I 0/ D 0, or chooses p� D p3 with expected profit rate
…P.w�; p�I ��.w�; p�// D …H

P .p3/ > …L
P.p3/ D �p

p3 � p
p2

	
.r �

r1/=
p

p3 > 0. However due to the difficulty of computing pcu we do not
explicitly identify the principal’s optimal offer.

Subcase r � r2: According to Lemma 4.16 part (c), p� D p3. According to
Proposition 4.12 part (c) the agent installs capacity

p
.1 C �/p3� � � and

the principal’s expected profit rate is …P.w�; p�I ��.w�; p�// D …H
P .p3/ >

…L
P.p3/ D �p

p3 � p
p2

	
.r � r1/=

p
p3 > 0. Therefore the principal proposes

w� D 2
p

.1 C �/p3� � � and p� D p3 that induces the agent to install
��.w�; p�/ D p

.1 C �/p3� � �.

Case .w; p/ 2 D(4.9) [ D(4.10): According to Proposition 4.9 part (d), if .w; p/ 2
D(4.10), then in case the principal makes an offer, the agent accepts the contract
and installs

p
.1 C �/p� � �. Since @…P=@w D �1 < 0, therefore w� D

2
p

.1 C �/p� � �. According to Propositions 4.9 part (c) and 4.12, if .w; p/ 2
D(4.9) (which implies p D p3), then in case the principal makes an offer, the agent
accepts the contract and installs

p
.1 � �/p3� � � if r 2 .0; p3/, installs eitherp

.1 � �/p3� � � or
p

.1 C �/p3� � � if r D p3, or installs
p

.1 C �/p3� � �

if r > p3. Since @…P=@w D �1 < 0, therefore w� D w3. Recall the definition
of …L

P.p3/ and …H
P .p3/ (see Eqs. (4.15) and (4.16)). The principal’s optimization
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problem is maxp�p3 …P.w�; pI ��.w�; p// where:

…P.w�; pI ��.w�; p// D
8<
:

max
˚
…L

P.p3/; …H
P .p3/

�
, for p D p3

r C � � p
p1

�
.1 C 2�/

p
p C rp

p

�
, for p > p3

Define x � p
p, the expression r C � � p

p1

�
.1 C 2�/

p
p C r=

p
p
	

can be
restated as f .x/ D r C��p

p1 ..1 C 2�/x C r=x/. Maximizing f .x/ for x � p
p3

is equivalent to maximizing r C � � p
p1

�
.1 C 2�/

p
p C r=

p
p
	

for p � p3 in
the sense that

argmax
p�p3

�
r C � � p

p1

�
.1 C 2�/

p
p C rp

p

��
D
 

argmax
x�p

p3

f .x/

!2

According to Lemma 4.13, r3 > p3 > r1, therefore we examine the following
subcases.

Subcase r 2 .0; r1�: According to Lemma 4.17 part (a), p� D p3. By Propo-
sition 4.12 part (a), …P.w�; p�I ��.w�; p�// D …L

P.p3/ D �p
p3 � p

p2

	
.r �

r1/=
p

p3 and note that …P.w�; p�I ��.w�; p�// � 0, therefore the principal
does not propose a contract.

Subcase r 2 .r1; p3�: According to Lemma 4.17 part (a), p� D p3. According
to Proposition 4.12 part (a) and (b), the principal’s expected profit rate is
…P.w�; p�I ��.w�; p�// D …L

P.p3/ D �p
p3 � p

p2

	
.r � r1/=

p
p3 > 0,

therefore the principal proposes a contract with w� D w3 and p� D p3 that
induces the agent to install ��.w�; p�/ D p

.1 � �/p3� � �.
Subcase r 2 .p3; r3�: According to Lemma 4.17 part (a), p� D p3. Accord-

ing to Proposition 4.12 part (c), the principal’s expected profit rate is
…P.w�; p�I ��.w�; p�// D …H

P .p3/ > …L
P.p3/ D �p

p3 � p
p2

	
.r �

r1/=
p

p3 > 0, therefore the principal proposes a contract with w� D w3 and
p� D p3 that induces the agent to install ��.w�; p�/ D p

.1 C �/p3� � �.
Subcase r > r3: According to Lemma 4.17 part (b), p� D r=.1 C 2�/

and the principal’s expected profit rate is …P.w�; p�I ��.w�; p�// D
r � 2

p
.1 C 2�/r�=.1 C �/ C �. According to Lemmas 4.14 and 4.15,

…P.w�; p�I ��.w�; p�// > 0, therefore the principal proposes a contract with
w� D 2

p
.1 C �/r�=.1 C 2�/ � � and p� D r=.1 C 2�/ that induces the

agent to install service capacity ��.w�; p�/ D p
.1 C �/r�=.1 C 2�/ � �.

ut
We describe the principal’s optimal strategy in Theorem 4.19 and Proposi-

tion 4.20. We identify the principal’s optimal offer only when r 2 .0; p3� or r � r2,
(see Theorem 4.19). The cases when r 2 .p3; r2/ are discussed in Proposition 4.20.
We prove Theorem 4.19 and Proposition 4.20 together.

Theorem 4.19. Consider a weakly risk-averse agent and .w; p/ 2 DWRA.
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(a) If r 2 .0; p2�, then the principal does not propose a contract.
(b) If r 2 .p2; p3�, then the principal’s offer and the capacity installed by the agent

are

.w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�
and

��.w�; p�/ D
p

.1 � �/pcu� � � (4.17)

and the principal’s expected profit rate is

…P.w�; p�I ��.w�; p�// D r C � � �pcu � p
p2

�
.1 � 2�/

p
pcu C rp

pcu

�

(4.18)

(c) If r 2 Œr2; r3�, then the principal’s offer and the capacity installed by the agent
are

.w�; p�/ D .w3; p3/ and ��.w�; p�/ D
p

.1 C �/p3� � � (4.19)

and the principal’s expected profit rate is

…P.w�; p�I ��.w�; p�// D r C � � p
p1

�
.1 C 2�/

p
p3 C rp

p3

�
(4.20)

(d) If r > r3, then the principal’s offer and the capacity installed by the agent are

.w�; p�/ D
 

2

s
.1 C �/r�

1 C 2�
� �;

r

1 C 2�

!
and

��.w�; p�/ D
s

.1 C �/r�

1 C 2�
� � (4.21)

and the principal’s expected profit rate is

…P.w�; p�I ��.w�; p�// D r � 2

s
.1 C 2�/r�

1 C �
C � (4.22)

Proposition 4.20. Given a weakly risk-averse agent and .w; p/ 2 DWRA. If r 2
.p3; r2/, then either

.w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�
and

��.w�; p�/ D
p

.1 � �/pcu� � �
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resulting in principal’s expected profit rate

…P.w�; p�I ��.w�; p�// D r C � � �pcu � p
p2

�
.1 � 2�/

p
pcu C r=

p
pcu
	

or the principal offers and the agent installs

.w�; p�/ D .w3; p3/ and ��.w�; p�/ D
p

.1 C �/p3� � �

resulting in principal’s expected utility rate

…P.w�; p�I ��.w�; p�// D r C � � p
p1

�
.1 C 2�/

p
p3 C r=

p
p3

	

Proof. In part (b) of Proposition 4.18, we solved for .w�; p�/ by restricting r to be
in .0; p2�, or in .p2; p3�, or in .p3; r2/, or in Œr2; C1/. In part (c) of Proposition 4.18,
we solved for .w�; p�/ by restricting r to be in .0; r1�, or in .r1; p3�, or in .p3; r3�, or
in .r3; C1/. The principal maximizes her expected profit rate by offering contract
that lead to admissible solutions (Definition 2.3) for any given value of r, � and
�. The structure of the proof for Theorem 4.19 and Proposition 4.20 is depicted in
Fig. 4.8.

Case r 2 .0; p2�: According to Proposition 4.18 part (a), (b1) and (c1), the
principal does not propose a contract. This case corresponds to Theorem 4.19 (a).

Case r 2 .p2; p3�: If r 2 .p2; r1�, then according to Proposition 4.18 part (a),

(b2) and (c1), the principal offers .w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�

Risk-Neutral
Principal

with Weakly
Risk-Averse

Agent

r > r3

w∗ = 2

√
(1 + η)rλ

1 + 2η
− λ and p∗ =

r

1 + 2η

and μ∗ =

√
(1 + η)rλ

1 + 2η
− λ

r ∈ [r2, r3] w∗ = w3 and p∗ = p3 and μ∗ =
√

(1 + η)p3λ − λ

r ∈ (p3, r2)
Either w∗ = ηpcu + 2

√
(1 − η)pcuλ − λ

and p∗ = pcu and μ∗ =
√

(1 − η)pcuλ − λ

or w∗ = w3 and p∗ = p3 and μ∗ =
√

(1 + η)p3λ − λ

r ∈ (p2, p3] w∗ = ηpcu + 2
√

(1 − η)pcuλ − λ

and p∗ = pcu and μ∗ =
√

(1 − η)pcuλ − λ

r ∈ (0, p2] No contract.

Fig. 4.8 Structure of the proof for Theorem 4.19 and Proposition 4.20
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and the agent installs ��.w�; p�/ D p
.1 � �/pcu� � �. If r 2 .r1; p3�, then

according to Proposition 4.18 part (a), (b2) and (c2) and Lemma 4.16 part

(b) the principal offers .w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�
and the

agent installs ��.w�; p�/ D p
.1 � �/pcu� � �. This case is addressed in

Theorem 4.19 (b).
Case r 2 .p3; r2/: According to Proposition 4.18 part (a), (b3) and (c3), the

principal either offers a contract .w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�
and the agent installs ��.w�; p�/ D p

.1 � �/p� � �, or offers .w�; p�/ D
.w3; p3/ and the agent installs ��.w�; p�/ D p

.1 C �/p3� � �. This case
corresponds to Proposition 4.20.

Case r 2 Œr2; r3�: According to Proposition 4.18 part (a), (b4) and (c3), the
principal offers a contract with .w�; p�/ D .w3; p3/ and the agent installs
��.w�; p�/ D p

.1 C �/p3� � �. This case corresponds to Theorem 4.19 (c).
Case r > r3: According to Proposition 4.18 part (a), (b4) and (c4) and

Lemma 4.17 part (b), the principal offers a contract with .w�; p�/ D�
2
p

.1 C �/r�=.1 C 2�/ � �; r=.1 C 2�/
�

and the agent installs service

capacity ��.w�; p�/ D p
.1 C �/r�=.1 C 2�/ � �. This case corresponds to

Theorem 4.19 (d).
ut

Theorem 4.19 and Proposition 4.20 indicate that the existence of a beneficial
contract with a weakly risk-averse agent is determined exogenously by the revenue
rate r, the failure rate �, and the risk coefficient �.

Since it is difficult to identify the principal’s optimal offer when r 2 .p3; r2/ due
to the difficulty of computing pcu we resort to numerical results to better understand
the principal’s choices.

Remark 4.21. Figure 4.9 demonstrates that when � D 0:1 and � D 0:5 there
exists an r0 2 .p3; r2/ such that when r 2 .p3; r0/, the principal offers .w�; p�/ D�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�
, when r 2 .r0; r2/, she offers .w�; p�/ D .w3; p3/

and when r D r0, the principal is indifferent about the two alternative offers.
However due to the difficulty of computing pcu (Eq. (4.13)), it is not clear how to
determine the general existence of such an r0 for all � 2 .0; 4=5/ and identify an
explicit expression of r0 as a function of � and �.

4.2 Optimal Strategies Given a Strongly Risk-Averse Agent

For the strongly risk-averse (SRA) agent we first derive the agent’s optimal strategy.
The agent’s optimization problem is stated in (4.4).
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r

Π~P
η = 0.1  and  λ = 0.01

Π~P = ΠP ( w∗ , p∗ = pcu ; μ∗ ) −  ΠP ( w∗ , p∗ = p3 ; μ∗ )

p3 r0 ( λ , η ) r2 ( λ , η )

0

η = 0.1

r

Π~P
η = 0.5  and  λ = 0.01

Π~P = ΠP ( w∗ , p∗ = pcu ; μ∗ ) −  ΠP ( w∗ , p∗ = p3 ; μ∗ )

p3 r0 ( λ , η ) r2 ( λ , η )

0

η = 0.5

a b

Fig. 4.9 The value of Q…P � …P.w�; p� D pcuI ��/ � …P.w�; p� D p3I ��/ for r 2 .p3; r2/

Notation:

w4 D p4 �
�
1 C 2� C 2

p
�.1 C �/

�
� (4.23)

Note that w4 and p4 are functions of � and � which are suppressed in our notation.
A technical lemma used later is introduced next (see proof in the Appendix).

Lemma 4.22. Let � > 1=3 and � > 0, then
�
1 C 2� C 2

p
�.1 C �/

�
� > 4�=

.1 C �/.

We describe a strongly risk-averse agent’s optimal response to any possible
offered contract .w; p/ 2 R

2C in Proposition 4.23.

Proposition 4.23. Consider a strongly risk-averse agent .� � 4=5/.

(a) Given

w � p 2 .0; p4/ (4.24)

then the agent would accept the contract if offered and install ��.w; p/ D 0

with resulting expected utility rate uA.��.w; p/I w; p/ D w � p � 0. The agent
rejects the contract if p 2 .0; p4/ and w 2 .0; p/.

(b) Given

p D p4 and w � w4 (4.25)
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then the agent would accept the contract if offered and is indifferent about
installing either ��.w; p/ D 0 or ��.w; p/ D p

.1 C �/p4� � �. In both
cases the agent’s expected utility rate is uA.��.w; p/I w; p/ D w � p4 � 0.
If r 2 .0; p4�, then neither �� D 0 nor �� D p

.1 C �/p4� � � leads to
admissible solutions (see Definition 2.3). If r > p4, then there exists w� such

that
�
.w�; p4/; �� D p

.1 C �/p4� � �
�

is the unique admissible solution (for

proof see Proposition 4.24). The agent rejects the contract if p D p4 and
w 2 .0; w4/.

(c) Given

p > p4 and w � 2
p

.1 C �/p� � � (4.26)

then the agent would accept the contract if offered and install ��.w; p/ Dp
.1 C �/p� � � with resulting expected utility rate uA.��.w; p/I w; p/ D

w � 2
p

.1 C �/p� C � � 0. The agent rejects the contract if p > p4 and

w 2
�
0; 2

p
.1 C �/p� � �

�
.

Proof. According to Table 4.1, the optimization of u.�/ when � 2 Œ4=5; 1/ versus
� � 1 is different. Therefore we prove the proposition separately for � 2 Œ4=5; 1/

and � � 1.
Case � 2 Œ4=5; 1/: Recall the definition of p1 and p2 in (4.5). Note that 4p2 >

p2 > 4p1 and according to Lemmas 4.7 part (b) and (c) and 4.22, p2 � p4 > 4p1.
Therefore we have 4p2 > p2 � p4 > 4p1. Figure 4.10 depicts the shape of u.�/

when � 2 Œ4=5; 1/ and the value of p falls in different ranges. The structure of the
proof when � 2 Œ4=5; 1/ is depicted in Fig. 4.11.

Case p 2 .0; 4p1�: According to Table 4.1, u.�/ is decreasing for � � 0.
Thus the agent’s optimal service capacity is ��.w; p/ D 0 and from (4.3)
u.��.w; p// D w � p.

Subcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the contract.
Subcase w � p: u.��.w; p// � 0, thus the agent would accept the contract if

offered.

Case p 2 .4p1; p2�: According to Table 4.1, there is a service capacity that
maximizes u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/ for
� > �. Denote the optimal service capacity in Œ0; �/ by ��

Œ0;�/.w; p/. Note that
u.�/ is decreasing with respect to � over Œ0; �/, therefore the agent’s optimal

service capacity is ��
Œ0;�/.w; p/ D 0 and from (4.3) u

�
��

Œ0;�/.w; p/
�

D w � p.

Denote the optimal service capacity for � > � by ��
�.w; p/. From the first

order condition ��
�.w; p/ D p

.1 C �/p� � � and from (4.3) u
�
��

�.w; p/
	 D

w � 2
p

.1 C �/p� C �. The agent has a choice of two service capacities
and he installs the one that generates a higher expected utility rate. Note

that u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D p � 2
p

.1 C �/p� C �. According to
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Fig. 4.10 Illustration of the forms of u.�/ when � 2 Œ4=5; 1/
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η ∈
[ 4

5
, 1

)

p > 4p2

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p ∈ (p2, 4p2]

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p ∈ (4p1, p2]

p ∈ (p4, p2]

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p = p4

w ≥ w4 μ∗ = 0 or μ∗ =
√

(1 + η)p4λ − λ

w ∈ (0, w4) Reject.

p ∈ (4p1, p4)

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

p ∈ (0, 4p1]

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

Fig. 4.11 Structure of the proof for Proposition 4.23 when � 2 Œ4=5; 1/

Lemmas 4.7 part (b) and (c) and 4.22, p2 � p4 > 4p1, therefore we examine the
following subcases.

Subcase p 2 .4p1; p4/: According to Lemma 4.6, 4p1 >
�
1 C 2�

�2
p

�.1 C �/
�
� and according to Lemma 4.5 part (a), u

�
��

Œ0;�/.w; p/
�

>

u
�
��

�.w; p/
	
, thus the agent’s optimal service capacity is ��.w; p/ D 0 and

u.��.w; p// D w � p.
Subsubcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the

contract.
Subsubcase w � p: u.��.w; p// � 0, therefore the agent would accept the

contract if offered.
Subcase p D p4: According to Lemma 4.5 part (c), u

�
��

Œ0;�/.w; p/
�

D
u
�
��

�.w; p/
	
, indicating that installing ��

Œ0;�/.w; p/ or ��
�.w; p/ results in

the same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D 0 or ��.w; p/ D p

.1 C �/p4��� with expected utility
rate u .��.w; p/I w; p/ D w � w4. However the principal would not propose
a contract in this case because none of these capacities leads to admissible
solutions (see Definition 2.3). For proof see Proposition 4.24. According to
Lemma 4.4, p4 > 4p1 ) w4 D 2

p
.1 C �/p4� � � > 0.

Subsubcase w 2 .0; w4/: u.��.w; p// < 0, therefore the agent rejects the
contract.
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Subsubcase w � w4: u.��.w; p// � 0, therefore the agent would accept
the contract if offered.

Subcase p 2 .p4; p2�: From Lemma 4.5 part (b), u
�
��

�.w; p/
	

> u
�
��

Œ0;�/

.w; p/
	
, thus the agent’s optimal service capacity is ��.w; p/ D p

.1 C �/p��
� and u.��.w; p// D w � 2

p
.1 C �/p� C �. According to Lemma 4.4,

p > p4 > 4p1 ) 2
p

.1 C �/p� � � > 0, therefore we further examine
the following subcases.

Subsubcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, therefore the

agent rejects the contract.
Subsubcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent

would accept the contract if offered.

Case p 2 .p2; 4p2�: According to Table 4.1, there is a service capacity that
maximizes u.�/ for � 2 .0; �� and a service capacity that maximizes u.�/

for � > �. Denote the optimal service capacity in .0; �� by ��
.0;��.w; p/.

From the first order condition ��
.0;��.w; p/ D p

.1 � �/p� � � and from (4.3)

u
�
��

.0;��.w; p/
�

D w � �p � 2
p

.1 � �/p� C �. Denote the optimal service

capacity for � > � by ��
�.w; p/. From the first order condition ��

�.w; p/ Dp
.1 C �/p��� and from (4.3) u

�
��

�.w; p/
	 D w�2

p
.1 C �/p�C�. The agent

has to decide which of the two service capacities he installs and he chooses the

one with higher expected utility rate. Note that u
�
��

�.w; p/
	�u

�
��

.0;��.w; p/
�

D
�p � 2

�p
1 C � � p

1 � �
	p

p�. According to Lemma 4.8 part (b) and (c), p >

p2 � p3, and according to Lemma 4.2 part (a) u
�
��

�.w; p/
	

> u
�
��

.0;��.w; p/
�

,

therefore the agent’s optimal service capacity is ��.w; p/ D p
.1 C �/p� � �

and u.��.w; p// D w � 2
p

.1 C �/p� C �. According to Lemma 4.4, p > p2 >

4p1 ) 2
p

.1 C �/p� � � > 0, therefore we examine the following subcases.

Subcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.

Case p > 4p2: According to Table 4.1, the service capacity that maximizes u.�/

must satisfy � > �. From the first order condition ��.w; p/ D p
.1 C �/p� � �

and u.��.w; p// D w � 2
p

.1 C �/p� C �. According to Lemma 4.4, p > 4p2 >

4p1 ) 2
p

.1 C �/p� � � > 0, therefore we examine the following subcases.

Subcase w 2
�

0; 2
p

.1 C �/p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.
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Fig. 4.12 Illustration of the forms of u.�/ when � � 1

This completes the proof for Proposition 4.23 when � 2 Œ4=5; 1/.
Case � � 1: According to Lemma 4.22, p4 > 4p1. Figure 4.12 depicts the shape of
u.�/ when � � 1 and the value of p falls in different ranges. The proof when � � 1

is depicted in Fig. 4.13.

Case p 2 .0; 4p1�: According to Table 4.1, u.�/ is decreasing with respect to � �
0. Thus the agent’s optimal service capacity is ��.w; p/ D 0 and from (4.3)
u.��.w; p// D w � p.

Subcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the contract.
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η ≥ 1

p > 4p1

p > p4

w ≥ 2
√

(1 + η)pλ − λ μ∗ =
√

(1 + η)pλ − λ

w ∈
(
0, 2

√
(1 + η)pλ − λ

)
Reject.

p = p4

w ≥ w4 μ∗ = 0 or μ∗ =
√

(1 + η)p4λ − λ

w ∈ (0, w4) Reject.

p ∈ (4p1, p4)

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

p ∈ (0, 4p1]

w ≥ p μ∗ = 0

w ∈ (0, p) Reject.

Fig. 4.13 Structure of the proof for Proposition 4.23 when � � 1

Subcase w � p: u.��.w; p// � 0, thus the agent would accept the contract if
offered.

Case p > 4p1: According to Table 4.1, there is a service capacity that maximizes
u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/ for � > �.
Denote the optimal service capacity in Œ0; �/ by ��

Œ0;�/.w; p/. Note that u.�/ is
decreasing with respect to � over Œ0; �/, therefore the agent’s optimal service

capacity is ��
Œ0;�/.w; p/ D 0 and from (4.3) u

�
��

Œ0;�/.w; p/
�

D w � p. Denote the

optimal service capacity for � > � by ��
�.w; p/. From the first order condition

��
�.w; p/ D p

.1 C �/p��� and from (4.3) u
�
��

�.w; p/
	 D w�2

p
.1 C �/p�C

�. The agent has to decide which of the two service capacities he is going to
install and he chooses the one that generates a higher expected utility rate. Note

that u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D p � 2
p

.1 C �/p� C �. According to

Lemma 4.22, p4 > 4p1 and we need to examine the following subcases.

Subcase p 2 .4p1; p4/: According to Lemma 4.6, 4p1>
�
1C2��2

p
�.1C�/

�
�

and according to Lemma 4.5 part (a), u
�
��

Œ0;�/.w; p/
�

> u
�
��

�.w; p/
	
,

therefore the agent’s optimal service capacity is ��.w; p/ D 0 and
u.��.w; p// D w � p.
Subsubcase w 2 .0; p/: u.��.w; p// < 0, therefore the agent rejects the

contract.
Subsubcase w � p: u.��.w; p// � 0, therefore the agent would accept the

contract if offered.



4.2 Optimal Strategies Given a Strongly Risk-Averse Agent 53

Subcase p D p4: According to Lemma 4.5 part (c), u
�
��

Œ0;�/.w; p/
�

D
u
�
��

�.w; p/
	
, indicating that installing ��

Œ0;�/.w; p/ or ��
�.w; p/ leads to the

same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D 0 or ��.w; p/ D p

.1 C �/p4� � � and in such case
u .��.w; p/I w; p/ D w � w4. However the principal would not propose a
contract in this case, because none of these capacities leads to admissible
solutions (see Definition 2.3). For proof see Proposition 4.24. According to
Lemma 4.4, p4 > 4p1 ) w4 D 2

p
.1 C �/p4� � � > 0.

Subsubcase w 2 .0; w4/: u.��.w; p// < 0, therefore the agent rejects the
contract.

Subsubcase w � w4: u.��.w; p// � 0, therefore the agent would accept
the contract if offered.

Subcase p > p4: From Lemma 4.5 part (b), u
�
��

�.w; p/
	

> u
�
��

Œ0;�/.w; p/
�

,

thus the agent’s optimal capacity is ��.w; p/ D p
.1 C �/p� � � and

u.��.w; p// D w � 2
p

.1 C �/p� C �. According to Lemma 4.4, p > p4 >

4p1 ) 2
p

.1 C �/p� � � > 0, therefore we further examine the following
subcases.
Subsubcase w 2

�
0; 2

p
.1 C �/p� � �

�
: u.��.w; p// < 0, thus the agent

rejects the contract.
Subsubcase w � 2

p
.1 C �/p� � �: u.��.w; p// � 0, therefore the agent

would accept the contract if offered.
ut

In summary, given exogenous market conditions such that a mutually beneficial
contract with a strongly risk-averse agent exists (see Theorem 4.27 later), only one
formula is needed for the agent to compute his optimal service capacity: ��.w; p/ Dp

.1 C �/p� � � > 0.
The conditions when a strongly risk-averse agent accepts the contract can be

depicted by the shaded areas in Fig. 4.14, where � D 2. The two shaded areas
with different grey scales represent conditions (4.24) and (4.26) under which the
agent accepts the contract but responds differently. The lower bound function of the
shaded areas (denoted by w0.p/) represents the set of offers that give the agent zero
expected utility rate. w0.p/ is defined as follows:

w0.p/ D
�

p when p 2 .0; p4�

2
p

.1 C �/p� � � when p > p4

Since limp!p�

4
w0.p/ D limp!pC

4
w0.p/ D p4, w0.p/ is continuous every-

where over interval p 2 RC. However since limp!p�

4
dw0.p/=dp D 1 ¤p

1 C �
�p

1 C � C p
�
	 D limp!pC

4
dw0.p/=dp, w0.p/ is not differentiable at

p D p4.
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w

p
0 p4

0

w4

μ∗ =0 μ∗ = (1+ η )p λ − λ

w=p

w=2 (1+ η )p λ − λ

Fig. 4.14 Conditions when a strongly risk-averse agent accepts the contract with � D 2

4.2.1 Sensitivity Analysis of a Strongly Risk-Averse Agent’s
Optimal Strategy

Since the principal does not propose a contract that will be responded to with zero
service capacity, therefore the only viable case is when the agent in response installs
positive service capacity: ��.w; p/ D p

.1 C �/p� � �. The w is bounded below
by 2

p
.1 C �/p� � � D �pP.1/ C pP.1/ C ��.w; p/ (see (4.26)), with �pP.1/

representing the expected risk rate perceived by the agent and pP.1/ representing
the expected penalty rate charged by the principal. It indicates that the agent has to
be reimbursed for the expected risk rate, the expected penalty rate, and the cost of
the optimal service capacity.
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The optimal service capacity ��.w; p/ D p
.1 C �/p��� depends on the penalty

rate p, the failure rate � and the risk coefficient �. Its derivatives are:

@��

@p
D
s

.1 C �/�

4p
> 0,

@��

@�
D
r

.1 C �/p

4�
� 1 and

@��

@�
D
s

p�

4.1 C �/
> 0

The derivatives indicate that given � and � the agent will increase the service
capacity when the penalty rate increases. Note that

p
.1 C �/p� � �, as a function

of �, increases when .1 C �/p=4 > �. From conditions (4.25) and (4.26) the agent
installs service capacity

p
.1 C �/p� � � when p � p4 and from Lemma 4.22 we

have p4 > 4p1. Therefore we have p > 4p1 D 4�=.1 C �/ ) .1 C �/p=4 > � )
@��=@� > 0. Thus, given p and �, the agent will increase the service capacity when
the failure rate increases. Given the penalty rate and the failure rate, the agent will
increase the service capacity as his risk-aversion increases.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
.1 C �/p��� is u�

A � uA.��.w; p/I w; p/ D w�2
p

.1 C �/p�C�, and it depends
on w, p, � and �. Note that @u�

A=@w D �1 < 0, @u�
A=@p D �p.1 C �/�=p < 0 and

@u�
A=@� D �pp�=.1 C �/ < 0, indicating that the agent’s optimal expected utility

rate decreases with the compensation rate, the penalty rate and his risk intensity.
Note that @u�

A=@� D � �pp � p
p1

	
=
p

p1, and from Proposition 4.23 p � p4 >

4p1 ) p
p � p

p1 > 0, therefore the agent’s optimal expected utility rate also
decreases with the failure rate.

Summary: Recall that a risk-neutral agent would accept a contract, install
��.w; p/ D 0 and receive u.��.w; p/I w; p/ D w � p given the set of offers

f.w; p/ W p 2 .0; ��; w � pg. Given the set of offers
n
.w; p/ W p > �; w � 2

p
p� � �

o
he would accept the contract, install ��.w; p/ D p

p� � � and receive expected
utility rate u.��.w; p/I w; p/ D w � 2

p
p� C �. By comparing the optimal solutions

of a strongly risk-averse agent with that of a risk-neutral agent, two conclusions are
drawn:

1. Given a �, the principal must set a higher p in order to induce a strongly risk-
averse agent to install a positive service capacity versus a risk-neutral agent (p >

� for risk-neutral agent, p >
�
1 C 2� C 2

p
�.1 C �/

�
� for strongly risk-averse

agent).
2. With the same w and p, given that the agent accepts the contract and installs a

positive service capacity, the expected utility rate of a strongly risk-averse agent
decreases with respect to � since

u
�
��.w; p/ D

p
.1 C �/p� � �

�
D w � 2

p
.1 C �/p� C �

) @u

@�
D �

s
p�

1 C �
< 0
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Therefore a strongly risk-averse agent is always strictly worse off than a risk-
neutral agent.

Compared to a weakly risk-averse agent, a strongly risk-averse agent has fewer
options of positive optimal service capacities (he will never install ��.w; p/ Dp

.1 � �/p� � � when � 2 Œ4=5; 1/) because the perceived risk rate is high
enough such that the only reasonable choice is to invest more in service capacity
to compensate for the risk.

4.2.2 Principal’s Optimal Strategy

We now derive the principal’s optimal strategy while anticipating the agent’s optimal
response ��.w; p/. For that the principal solves the optimization problem:

max
w>0;p>0

…P.w; pI ��.w; p// D max
w>0;p>0

�
r��.w; p/

� C ��.w; p/
� w C p�

� C ��.w; p/

�

(4.27)

and recovers the optimizing values: .w�; p�/ D argmaxw>0;p>0 …P.w; pI ��.w; p//.
Before deriving the principal’s optimal strategy, we reexamine the case when the

principal offers p D p4 and w � w4, under which the agent is indifferent regarding
two different service capacities which however effect the principal differently. Since
any selected solution ..w; p/; �/ has to be an admissible solution (see Definition 2.3)
we test the solutions’ membership in Proposition 4.24.

Proposition 4.24. Suppose a strongly risk-averse agent. Assume that the princi-
pal’s possible offers are constrained to set f.w; p/ W p D p4; w � w4g.

(a) If r 2 .0; p4�, then the principal does not propose a contract.
(b) If r > p4, the agent installs

p
.1 C �/p4� � � if offered a contract.

Proof. For w � w4 we have @…P.w; p4I �/=@� D .r � p4/�=.� C �/2. Define
�L � 0 and �H � p

.1 C �/p4� � � and note that �H > �L. If r 2 .0; p4/, then
@…P=@� < 0, therefore ..w; p4/; �L/ � ..w; p4/; �H/ and the agent would install
�L if offered a contract since ..w; p4/; �H/ is not an admissible solution. However
in such case the principal’s expected profit rate is …P.w; p4I �L/ D �w C p4 � 0,
therefore the principal would not propose a contract. If r D p4, then @…P=@� D
0, therefore the agent installs either �L or �H if offered a contract. However in
such case the principal’s expected profit rate is …P.w; p4I �L/ D …P.w; p4I �H/ D
�w C p4 � 0, therefore the principal would not propose a contract. If r > p4, then
@…P=@� > 0 and ..w; p4/; �H/ � ..w; p4/; �L/. If the principal offers a contract
(where the conditions will be discussed in detail in Theorem 4.27 that follows), then
by Definition 2.3 only �H leads to admissible solutions. ut
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Notation:

r4 �
�
1 C 2� C 2

p
�.1 C �/

�
.1 C 2�/� D .1 C 2�/p4 (4.28)

r4 is a function of � and � however we suppress the parameters .�; �/.
Next we state several technical lemmas (see proofs in the Appendix).

Lemma 4.25. Consider maxx�p
p4

f .x/ where f .x/ D rC��p
p1 ..1 C 2�/x C r=x/

and denote x� D argmaxx�p
p4

f .x/. The solutions to this optimization problem
are

(a) x� D p
p4 if r 2 .0; r4�.

(b) x� D p
r=.1 C 2�/ if r > r4.

Lemma 4.26. Let � > 0 and � > 0, then .1 C 2�/p4 >
�
1 C 3� C 2

p
�.1 C 2�/

�
�=.1 C �/.

The principal’s optimal strategy is derived in Theorem 4.27. Recall that Proposi-
tion 4.23 describes the agent’s optimal response to each pair of compensation rate
and penalty rate .w; p/ 2 R

2C. Since the principal will not propose a contract that is
going to be rejected by a strongly risk-averse (SRA) agent, therefore Theorem 4.27
only considers pairs .w; p/ 2 R

2C such that the agent receives a non-negative
expected utility rate. Define

D(4.24) � f.w; p/ that satisfies (4.24) when � � 4=5g
D(4.25) � f.w; p/ that satisfies (4.25) when � � 4=5g
D(4.26) � f.w; p/ that satisfies (4.26) when � � 4=5g
DSRA � D(4.24) [ D(4.25) [ D(4.26)

(4.29)

Theorem 4.27. Given a strongly risk-averse agent and .w; p/ 2 DSRA.

(a) If r 2 .0; p4�, then the principal does not propose a contract.
(b) If r 2 .p4; r4�, then the principal’s offer and the capacity installed by the agent

are

.w�; p�/ D .w4; p4/ and ��.w�; p�/ D
p

.1 C �/p4� � � (4.30)

and the principal’s expected profit rate is

…P.w�; p�I ��.w�; p�// D r C � � p
p1

�
.1 C 2�/

p
p4 C rp

p4

�
(4.31)
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(c) If r > r4, then the principal’s offer and the capacity installed by the agent are

.w�; p�/D
 

2

s
.1 C �/r�

1 C 2�
� �;

r

1 C 2�

!
and ��.w�; p�/D

s
.1 C �/r�

1 C 2�
� �

(4.32)

and the principal’s expected profit rate is

…P.w�; p�I ��.w�; p�// D r � 2

s
.1 C 2�/r�

1 C �
C � (4.33)

Proof. The structure of the proof is depicted in Fig. 4.15.

Case .w; p/ 2 D(4.24) [ D(4.25): According to Proposition 4.23 part (a), if
.w; p/ 2 D(4.24), then in case the principal makes an offer, the agent accepts
the contract but does not install any service capacity. Since @…P=@w D �1 < 0,
therefore w� D p and from Eq. (3.3) …P.w�; pI ��.w�; p// D �w� C p D
�p C p D 0. According to Propositions 4.23 part (b) and 4.24, if .w; p/ 2 D(4.25)

(which implies p D p4), then the principal does not propose a contract if
r 2 .0; p4�, or installs

p
.1 C �/p4��� in case the principal makes an offer when

r > p4. Since @…P=@w D �1 < 0, therefore w� D w4. From Proposition 4.23
part (b), if the principal offers a contract with .w; p/ D .w4; p4/, then the agent
installs either ��.w4; p4/ D 0 or ��.w4; p4/ D p

.1 C �/p4� � �. Denote the
principal’s expected profit rate when .w; p/ D .w4; p4/ and ��.w; p/ D 0 by
…L

P.p4/, and denote the principal’s expected profit rate when .w; p/ D .w4; p4/

and ��.w; p/ D p
.1 C �/p4��� by …H

P .p4/. By plugging the value of w, p and
� into Eq. (3.3):

Risk-Neutral
Principal

with Strongly
Risk-Averse

Agent

(w, p) ∈ (4.25) ∪ (4.26)

r > r4

w∗ = 2

√
(1 + η)rλ

1 + 2η
− λ and p∗ =

r

1 + 2η

and μ∗ =

√
(1 + η)rλ

1 + 2η
− λ

r ∈ (p4, r4]
w∗ = w4 and p∗ = p4

and μ∗ =
√

(1 + η)p4λ − λ

r ∈ (0, p4] No contract offered.

(w, p) ∈ (4.24) ∪ (4.25)

r > p4
w∗ = w4 and p∗ = p4

and μ∗ =
√

(1 + η)p4λ − λ

r ∈ (0, p4] No contract offered.

Fig. 4.15 Structure of the proof for Theorem 4.27
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…L
P.p4/ D �w4 C p4 D 0 (4.34)

…H
P .p4/ D r C � � p

p1

�
.1 C 2�/

p
p4 C rp

p4

�
D
�p

p4 � p
p1p

p4

�
.r � p4/

(4.35)

In such case the principal’s optimization problem is maxp2.0;p4� …P.w�; pI ��
.w�; p// where:

…P.w�; pI ��.w�; p// D
�

0 for p 2 .0; p4/

max
˚
…L

P.p4/; …H
P .p4/

�
for p D p4

Subcase r 2 .0; p4�: By Proposition 4.24 part (a), the principal does not offer
a contract.

Subcase r > p4: According to Lemma 4.25 part (b), p� D p4 and
according to Proposition 4.24 part (b) the principal’s expected profit rate
…P.w�; p�I ��.w�; p�// D …H

P .p4/ > …L
P.p4/ D 0. Thus the principal

proposes a contract with w� D w4 and p� D p4 that induces the agent to
install ��.w�; p�/ D p

.1 C �/p4� � �.

Case .w; p/ 2 D(4.25) [ D(4.26): According to Proposition 4.23 part (c), if
.w; p/ 2 D(4.26), then in case the principal makes an offer, the agent accepts
the contract and installs

p
.1 C �/p� � �. Since @…P=@w D �1 < 0, therefore

w� D 2
p

.1 C �/p� � �. According to Propositions 4.23 part (b) and 4.24, if
.w; p/ 2 D(4.25) (which implies p D p4), then the principal does not propose a
contract if r 2 .0; p4�, or installs

p
.1 C �/p4� � � in case the principal makes

an offer when r > p4. Since @…P=@w D �1 < 0, therefore w� D w4. From
Proposition 4.23 part (b), if the principal offers a contract with .w; p/ D .w4; p4/,
then the agent installs either ��.w4; p4/ D 0 or ��.w4; p4/ D p

.1 C �/p4� � �.
The principal’s optimization problem is maxp�p4 …P.w�; pI ��.w�; p// where:

…P.w�; pI ��.w�; p// D
8<
:

max
˚
…L

P.p4/; …H
P .p4/

�
, for p D p4

r C � � p
p1

�
.1 C 2�/

p
p C rp

p

�
, for p > p4

Define x � p
p, the expression r C � � p

p1

�
.1 C 2�/

p
p C r=

p
p
	

can be
restated as f .x/ D r C��p

p1 ..1 C 2�/x C r=x/. Maximizing f .x/ with respect
for x � p

p4 is equivalent to maximizing r C � � p
p1

�
.1 C 2�/

p
p C r=

p
p
	

for p � p4 in the sense that

argmax
p�p4

�
r C � � p

p1

�
.1 C 2�/

p
p C rp

p

��
D
 

argmax
x�p

p4

f .x/

!2

Since r4 D .1 C 2�/p4 > p4, we examine the following subcases.
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Subcase r 2 .0; p4�: By Proposition 4.24 part (a), the principal does not
propose a contract.

Subcase r 2 .p4; r4�: According to Lemma 4.25 part (a), p� D p4. According
to Proposition 4.24 part (b), …P.w�; p�I ��.w�; p�// D …H

P .p4/ > …L
P.p4/ D

0. Therefore the principal proposes a contract with w� D w4 and p� D p4 that
induces the agent to install ��.w�; p�/ D p

.1 C �/p4� � �.
Subcase r > r4: According to Lemma 4.25 part (b), p� D r=.1 C 2�/

and the principal’s expected profit rate is …P.w�; p�I ��.w�; p�// D
r � 2

p
.1 C 2�/r�=.1 C �/ C �. According to Lemmas 4.14 and 4.26

…P.w�; p�I ��.w�; p�// > 0, therefore the principal proposes a contract
with w� D 2

p
.1 C �/r�=.1 C 2�/ � � and p� D r=.1 C 2�/ that induces the

agent to install service capacity ��.w�; p�/ D p
.1 C �/r�=.1 C 2�/ � �.

To summarize, if r 2 .0; p4�, then the principal does not propose a contract. This case
corresponds to Theorem 4.27 (a). If r 2 .p4; r4�, then the principal offers .w�; p�/ D
.w4; p4/ and the agent installs capacity ��.w�; p�/ D p

.1 C �/p4� � �. This case
corresponds to Theorem 4.27 (b). Finally if r > r4, then according to Lemma 4.25

part (b), the principal offers .w�; p�/ D
�
2
p

.1 C �/r�=.1 C 2�/ � �; r=.1 C 2�/
�

and the agent installs capacity ��.w�; p�/ D p
.1 C �/r�=.1 C 2�/ � �. This case

corresponds to Theorem 4.27 (c). ut
Theorem 4.27 indicates that the existence of a beneficial contract for strongly

risk-averse agent is determined exogenously by the market (the revenue rate r), the
nature of the equipment (the failure rate �) and the nature of the agent (the risk
coefficient �).

4.3 Risk-Averse Agent: A Summary

Recall the definition of p2, p3, p4, r2, r3 and r4 from (4.5), (4.12), (4.23) and (4.28).
The conditions that a principal makes offers to a risk-averse agent is depicted by the
shaded areas in Fig. 4.16. The horizontal axis represents the agent’s risk coefficient,
and the vertical axis represents the revenue rate generated by the principal’s unit,
which is exogenously determined by the market. The principal makes different
offers to the agent when .r; �/ is in the five shaded areas with different gray scales.
We define

p34 �
�

p3 for � 2 .0; 4=5/

p4 for � � 4=5
and r34 �

�
r3 for � 2 .0; 4=5/

r4 for � � 4=5

Note that lim�!.4=5/� r34 D 13� D lim�!.4=5/C r34, and note that lim�!.4=5/� @r34=

@� D 125�=6 D lim�!.4=5/C @r34=@�, therefore r34 is continuous and differ-
entiable everywhere over RC. Since lim�!.4=5/� p34 D 5� D lim�!.4=5/C p34

and lim�!.4=5/� @p34=@� D 25�=6 D lim�!.4=5/C @p34=@�, therefore p34 is
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r

η
0 4

5
Weakly Risk−Averse Strongly Risk−Averse

λ

4 λ
5 λ

13 λ

p∗ =
r

1+2 η

p∗ = pcu

p∗ = pcu  or p3

p∗ = p3

p∗ = p4

p2

p3

r2

r3

p4

r4

Fig. 4.16 Conditions when a risk-neutral principal makes offers to a risk-averse agent

continuous and differentiable everywhere over RC as well. Furthermore, note
that lim�!0C p3 D lim�!0C r2 D lim�!0C r3 D 4� and lim�!.4=5/� r2 D
lim�!.4=5/� p2 D 5�.

4.3.1 Sensitivity Analysis of Optimal Strategies in High
Revenue Industry

The revenue rate r is determined exogenously by the market, and consider r > r34

(high revenue rate). Equations (4.21) and (4.32) are the second-best solutions when
the agent is weakly and strongly risk-averse respectively, and they have the same
functional form.

The risk-averse agent’s optimal strategy is examined first. Note that the optimal
service capacity of a risk-averse agent (�� D p

.1 C �/r�=.1 C 2�/ � �)
is a function of r, �, and �. The derivatives of �� with respect to the
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parameters are @��=@r D p
.1 C �/�=

�
2
p

.1 C 2�/r
�

> 0, @��=@� Dp
.1 C �/r=

�
2
p

.1 C 2�/�
�

�1 and @��=@� D �p
r�=

�
2
p

.1 C �/.1 C 2�/3

�
<

0. The derivatives indicate that given � and �, the optimal capacity increases when
the revenue rate increases, and therefore the average downtime of the principal’s
unit decreases. Given the revenue rate and the failure rate, the average downtime
of the principal’s equipment will increase as the agent becomes more risk-averse.
Note that �� D p

.1 C �/r�=.1 C 2�/ � �, as a function of �, increases when
.1 C �/r=4.1 C 2�/ > �. According to Lemma 4.3 we have p3 > 4p1 and according
to Lemma 4.22 we have p4 > 4p1. Furthermore, since we assume that r > r34, then
r > r3 D .1 C 2�/p3 ) r=.1 C 2�/ > p3 ) r=.1 C 2�/ > 4p1 D 4�=.1 C �/ )
.1 C �/r=4.1 C 2�/ > � if � 2 .0; 4=5/ and r > r4 D .1 C 2�/p4 ) r=.1 C 2�/ >

p4 ) r=.1C2�/ > 4p1 D 4�=.1C�/ ) .1C�/r=4.1C2�/ > � if � � 4=5. Thus,
given the revenue rate and the risk coefficient, the failure rate is low compared to the
revenue rate, and the average downtime of the principal’s equipment will decrease
when the failure rate increases.

Next we examine the principal’s optimal strategy. Note that the optimal compen-
sation rate of a principal with a risk-averse agent (w� D 2

p
.1 C �/r�=.1 C 2�/��)

is a function of r, �, and �. The derivatives of w� with respect to the parameters are
@w�=@r D p

.1 C �/�=.1 C 2�/r > 0, @w�=@� D p
.1 C �/r=.1 C 2�/� � 1 and

finally @w�=@� D �pr�=.1 C �/.1 C 2�/3 < 0. The derivatives indicate that given
the � and �, the optimal compensation rate increases with respect to r. Given the r
and the �, the optimal compensation rate decreases as the agent becomes more risk-
averse. Note that w� D 2

p
.1 C �/r�=.1 C 2�/ � �, as a function of �, increases

when .1 C �/r=.1 C 2�/ > �. According to Lemma 4.3 we have p3 > 4p1 > p1

and according to Lemma 4.22 we have p4 > 4p1 > p1. Furthermore, since we
assume that r > r34, then r > r3 D .1 C 2�/p3 ) r=.1 C 2�/ > p3 )
r=.1 C 2�/ > p1 D �=.1 C �/ ) .1 C �/r=.1 C 2�/ > � if � 2 .0; 4=5/ and
r > r4 D .1 C 2�/p4 ) r=.1 C 2�/ > p4 ) r=.1 C 2�/ > p1 D �=.1 C �/ )
.1 C �/r=.1 C 2�/ > � if � � 4=5. Therefore the failure rate is low compared to
the revenue rate (.1 C �/r=.1 C 2�/ > � ) @w�=@� > 0), indicating that the w�
increases with respect to the failure rate.

The principal’s optimal p� given a risk-averse agent (p� D r=.1 C 2�/) is a
function of r and �. Note that p� is independent of the failure rate � under the
assumption that the revenue rate is sufficiently high compared to the failure rate.
The derivatives of p� with respect to the parameters are @p�=@r D 1=.1 C 2�/ > 0

and @p�=@� D �2r=.1 C 2�/2 < 0. The derivatives indicate that given the risk �,
the optimal penalty p� increases with respect to r, and given r, the p� decreases with
respect to �.

The principal’s optimal expected profit rate given a risk-averse agent

…�
P � …P.w�; p�I ��.w�; p�// D r � 2

p
.1 C 2�/r�=.1 C �/ C �
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is a function of r, �, and �. The derivatives of …�
P with respect to these parameters

are @…�
P=@r D 1 �p

.1 C 2�/�=.1 C �/r, @…�
P=@� D 1 �p

.1 C 2�/r=.1 C �/�,
@…�

P=@� D �pr�=.1 C 2�/.1 C �/3 < 0. The derivatives indicate that given r and
�, the principal’s optimal expected profit rate decreases as the agent becomes more
risk-averse. Note that …�

P D r � 2
p

.1 C 2�/r�=.1 C �/ C �, as a function of �,
decreases when .1 C 2�/r=.1 C �/ > �, and as a function of r, increases when r >

.1 C 2�/�=.1 C �/. According to Lemma 4.3 we have p3 > 4p1 > p1 and according
to Lemma 4.22 we have p4 > 4p1 > p1. Furthermore, since we assume that r > r34,
then r > r3 D .1 C 2�/p3 ) r=.1 C 2�/ > p3 ) r=.1 C 2�/ > p1 D �=.1 C �/

if � 2 .0; 4=5/ and r > r4 D .1 C 2�/p4 ) r=.1 C 2�/ > p4 ) r=.1 C 2�/ >

p1 D �=.1 C �/ if � � 4=5. Therefore given a � and an �, the revenue rate is high
compared to the failure rate (r > .1 C 2�/�=.1 C �/ ) @…�

P=@r > 0), thus the
principal’s optimal expected profit rate increases with respect to the revenue rate.
Note that since � > 0, therefore r > .1 C 2�/�=.1 C �/ > .1 C �/�=.1 C 2�/ )
.1 C 2�/r=.1 C �/ > �, which implies that given an r and �, the failure rate is low
compared to the revenue rate (.1 C 2�/r=.1 C �/ > � ) @…�

P=@� < 0), therefore
the principal’s optimal expected profit rate decreases with respect to �.

4.3.2 The Second-Best Solution in High Revenue Industry

By comparing the second-best solution given a risk-averse agent ((4.21) and (4.32))
with the second-best given a risk-neutral agent when r > r34, four conclusions are
drawn.

1. The optimal w� and the optimal p� decrease when the agent is risk-averse versus
risk-neutral agent (w� W 2

p
r� � � > 2

p
.1 C �/r�=.1 C 2�/ � � and p� W r >

r=.1 C 2�/). It indicates that the risk adds an incentive for the agent to install
a higher service capacity by coupling it to the penalty charge collected by the
principal.

2. The principal is worse off with a risk-averse agent than a risk-neutral agent
(r � 2

p
r� C � > r � 2

p
.1 C 2�/r�=.1 C �/ C �), as well as with an agent

whose action is contractible (recall that the principal receives the same expected
profit rate with a risk-neutral agent in first-best and second-best setting). This
conclusion is consistent with Proposition 3 part (ii) in Harris and Raviv (1978).
The principal’s loss can be explained as follows: On one hand, the decrease in
the agent’s optimal capacity when risk-averse reduces the revenue performance
of the principal’s unit. At the same time, the monetary equivalency of the risk
perceived by the agent is not channeled to the principal, although from the agent’s
perspective it serves as part of the penalty charge.

3. The �� of a risk-averse agent is strictly less than that of a risk-neutral agent
(
p

r� � � >
p

.1 C �/r�=.1 C 2�/ � �). Recall that when the agent is risk-
neutral, the �� in the second-best solution is the same as that in the first-best
solution, indicating that the unobservability of the agent’s service capacity does
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not contribute to the decrease of the optimal service capacity. When the agent is
risk-averse, he compensates for the risk he bears by reducing �.

4. Given the compensation rate and penalty rate, both weakly and strongly risk-
averse agents are worse off compared to a risk-neutral agent.

To summarize, for a principal with high revenue generating unit, agent’s risk-
aversion reduces the efficiency of the contract (compared to the first-best contract),
and therefore it reduces the social welfare.
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